Skip to main content

Motif-Driven Design of Protein–Protein Interfaces

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1414))

Abstract

Protein–protein interfaces regulate many critical processes for cellular function. The ability to accurately control and regulate these molecular interactions is of major interest for biomedical and synthetic biology applications, as well as to address fundamental biological questions. In recent years, computational protein design has emerged as a tool for designing novel protein–protein interactions with functional relevance. Although attractive, these computational tools carry a steep learning curve. In order to make some of these methods more accessible, we present detailed descriptions and examples of ROSETTA computational protocols for the design of functional protein binders using seeded protein interface design. In these protocols, a motif of known structure that interacts with the target site is grafted into a scaffold protein, followed by design of the surrounding interaction surface.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Procko E, Hedman R, Hamilton K et al (2013) Computational design of a protein-based enzyme inhibitor. J Mol Biol 425:3563–3575. doi:10.1016/j.jmb.2013.06.035

    Article  CAS  PubMed  Google Scholar 

  2. Fleishman SJ, Whitehead TA, Ekiert DC et al (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332:816–821. doi:10.1126/science.1202617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Procko E, Berguig GY, Shen BW et al (2014) A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell 157:1644–1656. doi:10.1016/j.cell.2014.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leaver-Fay A, Tyka M, Lewis SM et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574. doi:10.1016/B978-0-12-381270-4.00019-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382. doi:10.1146/annurev.biochem.77.062906.171838

    Article  CAS  PubMed  Google Scholar 

  6. Fleishman SJ, Leaver-Fay A, Corn JE et al (2011) RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS ONE 6, e20161. doi:10.1371/journal.pone.0020161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wärnmark A, Treuter E, Gustafsson J-A et al (2002) Interaction of transcriptional intermediary factor 2 nuclear receptor box peptides with the coactivator binding site of estrogen receptor alpha. J Biol Chem 277:21862–21868. doi:10.1074/jbc.M200764200

    Article  PubMed  Google Scholar 

  8. Savkur RS, Burris TP (2004) The coactivator LXXLL nuclear receptor recognition motif. J Pept Res 63:207–212. doi:10.1111/j.1399-3011.2004.00126.x

    Article  CAS  PubMed  Google Scholar 

  9. Ofek G, Guenaga FJ, Schief WR et al (2010) Elicitation of structure-specific antibodies by epitope scaffolds. Proc Natl Acad Sci U S A 107:17880–17887. doi:10.1073/pnas.1004728107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Correia BE, Ban Y-EA, Holmes MA et al (2010) Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 18:1116–1126. doi:10.1016/j.str.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  11. Azoitei ML, Ban Y-EA, Julien J-P et al (2012) Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope. J Mol Biol 415:175–192. doi:10.1016/j.jmb.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  12. Azoitei ML, Correia BE, Ban Y-EA et al (2011) Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 334:373–376. doi:10.1126/science.1209368

    Article  CAS  PubMed  Google Scholar 

  13. Fleishman SJ, Whitehead TA, Strauch E-M et al (2011) Community-wide assessment of protein-interface modeling suggests improvements to design methodology. J Mol Biol 414:289–302. doi:10.1016/j.jmb.2011.09.031

    Article  CAS  PubMed  Google Scholar 

  14. Cooper S, Khatib F, Treuille A et al (2010) Predicting protein structures with a multiplayer online game. Nature 466:756–760. doi:10.1038/nature09304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Whitehead TA, Chevalier A, Song Y et al (2012) Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol 30:543–548. doi:10.1038/nbt.2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Procko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Silva, DA., Correia, B.E., Procko, E. (2016). Motif-Driven Design of Protein–Protein Interfaces. In: Stoddard, B. (eds) Computational Design of Ligand Binding Proteins. Methods in Molecular Biology, vol 1414. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3569-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3569-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3567-3

  • Online ISBN: 978-1-4939-3569-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics