Skip to main content

Isolating and Purifying Clostridium difficile Spores

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1476))

Abstract

The ability for the obligate anaerobe, Clostridium difficile to form a metabolically dormant spore is critical for the survival of this organism outside of the host. This spore form is resistant to a myriad of environmental stresses, including heat, desiccation, and exposure to disinfectants and antimicrobials. These intrinsic properties of spores allow C. difficile to survive long-term in an oxygenated environment, to be easily transmitted from host-to-host, and to persist within the host following antibiotic treatment. Because of the importance of the spore form to the C. difficile life cycle and treatment and prevention of C. difficile infection (CDI), the isolation and purification of spores are necessary to study the mechanisms of sporulation and germination, investigate spore properties and resistances, and for use in animal models of CDI. Here we provide basic protocols, in vitro growth conditions, and additional considerations for purifying C. difficile spores for a variety of downstream applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. CDC (2013) Antibiotic resistance threats in the United States. In: Control CfD (ed) http://www.cdc.gov/features/AntibioticResistanceThreats/2013

  2. Dubberke ER, Olsen MA (2012) Burden of Clostridium difficile on the healthcare system. Clin Infect Dis 55(Suppl 2):S88–S92, PMCID: 3388018

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sorg JA, Sonenshein AL (2008) Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190(7):2505–2512, PMCID: 2293200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, Kelly CP (2008) A mouse model of Clostridium difficile-associated disease. Gastroenterology 135(6):1984–1992

    Article  PubMed  Google Scholar 

  5. Goulding D, Thompson H, Emerson J, Fairweather NF, Dougan G, Douce GR (2009) Distinctive profiles of infection and pathology in hamsters infected with Clostridium difficile strains 630 and B1. Infect Immun 77(12):5478–5485, PMCID: 2786451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Douce G, Goulding D (2010) Refinement of the hamster model of Clostridium difficile disease. Methods Mol Biol 646:215–227

    Article  CAS  PubMed  Google Scholar 

  7. Sorg JA, Sonenshein AL (2010) Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 192(19):4983–4990, PMCID: 2944524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Francis MB, Allen CA, Shrestha R, Sorg JA (2013) Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 9(5):e1003356, PMCID: 3649964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu R, Suarez JM, Weisblum B, Gellman SH, McBride SM (2014) Synthetic polymers active against Clostridium difficile vegetative cell growth and spore outgrowth. J Am Chem Soc. PMCID: 4210120

    Google Scholar 

  10. Kuijper EJ, Coignard B, Tull P (2006) Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12(Suppl 6):2–18

    Article  CAS  PubMed  Google Scholar 

  11. Berg JM, Tymoczko JL, Stryer L, Stryer L (2002) Biochemistry, 5th edn. W.H. Freeman, New York

    Google Scholar 

  12. Putnam EE, Nock AM, Lawley TD, Shen A (2013) SpoIVA and SipL are Clostridium difficile spore morphogenetic proteins. J Bacteriol 195(6):1214–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. George WL, Sutter VL, Citron D, Finegold SM (1979) Selective and differential medium for isolation of Clostridium difficile. J Clin Microbiol 9(2):214–219, PMCID: 272994

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilson KH, Kennedy MJ, Fekety FR (1982) Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol 15(3):443–446, PMCID: 272115

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Edwards AN, Nawrocki KL, McBride SM (2014) Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect Immun 82(10):4276–4291

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bouillaut L, McBride SM, Sorg JA (2011) Genetic manipulation of Clostridium difficile. Curr Protoc Microbiol; Chapter 9: Unit 9A 2. PMCID: 3615975

    Google Scholar 

  17. Kuehne SA, Heap JT, Cooksley CM, Cartman ST, Minton NP (2011) ClosTron-mediated engineering of Clostridium. Methods Mol Biol 765:389–407

    Article  CAS  PubMed  Google Scholar 

  18. Francis MB, Sorg JA (2013) Virulence studies of Clostridium difficile. Bio-protocol 3(24):e1002

    Google Scholar 

  19. Edwards AN, Suarez JM, McBride SM (2013) Culturing and maintaining Clostridium difficile in an anaerobic environment. J Vis Exp (79)

    Google Scholar 

  20. Sorg JA, Dineen SS (2009) Laboratory maintenance of Clostridium difficile. Curr Protoc Microbiol; Chapter 9: Unit 9A.1

    Google Scholar 

  21. Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, Pickard DJ, Parkhill J, Choudhary J, Dougan G (2009) Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol 191(17):5377–5386, PMCID: 2725610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sorg JA, Sonenshein AL (2009) Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J Bacteriol 191(3):1115–1117

    Article  CAS  PubMed  Google Scholar 

  23. Francis MB, Allen CA, Sorg JA (2015) Spore cortex hydrolysis precedes DPA release during Clostridium difficile spore germination. J Bacteriol 197(14):2276–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paredes-Sabja D, Bond C, Carman RJ, Setlow P, Sarker MR (2008) Germination of spores of Clostridium difficile strains, including isolates from a hospital outbreak of Clostridium difficile-associated disease (CDAD). Microbiology 154(Pt 8):2241–2250

    Article  CAS  PubMed  Google Scholar 

  25. Permpoonpattana P, Tolls EH, Nadem R, Tan S, Brisson A, Cutting SM (2011) Surface layers of Clostridium difficile endospores. J Bacteriol 193(23):6461–6470, PMCID: 3232898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hashimoto T, Black SH, Gerhardt P (1960) Development of fine structure, thermostability, and dipicolinate during sporogenesis in a bacillus. Can J Microbiol 6:203–212

    Article  CAS  PubMed  Google Scholar 

  27. Hitchins AD, Kahn AJ, Slepecky RA (1968) Interference contrast and phase contrast microscopy of sporulation and germination of Bacillus megaterium. J Bacteriol 96(5):1811–1817, PMCID: 315245

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Burns DA, Minton NP (2011) Sporulation studies in Clostridium difficile. J Microbiol Methods 87(2):133–138

    Article  PubMed  Google Scholar 

  29. Pereira FC, Saujet L, Tome AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO (2013) The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 9(10):e1003782, PMCID: 3789829

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fimlaid KA, Bond JP, Schutz KC, Putnam EE, Leung JM, Lawley TD, Shen A (2013) Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet 9(8):e1003660, PMCID: 3738446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I (2013) Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 9(10):e1003756, PMCID: 3789822

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarraga AM, Wang H, Holden MT, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38(7):779–786

    Article  PubMed  Google Scholar 

  33. Monot M, Boursaux-Eude C, Thibonnier M, Vallenet D, Moszer I, Medigue C, Martin-Verstraete I, Dupuy B (2011) Reannotation of the genome sequence of Clostridium difficile strain 630. J Med Microbiol 60(Pt 8):1193–1199

    Article  CAS  PubMed  Google Scholar 

  34. Stabler RA, He M, Dawson L, Martin M, Valiente E, Corton C, Lawley TD, Sebaihia M, Quail MA, Rose G, Gerding DN, Gibert M, Popoff MR, Parkhill J, Dougan G, Wren BW (2009) Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10(9):R102, PMCID: 2768977

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shonna M. McBride .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Edwards, A.N., McBride, S.M. (2016). Isolating and Purifying Clostridium difficile Spores. In: Roberts, A., Mullany, P. (eds) Clostridium difficile. Methods in Molecular Biology, vol 1476. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6361-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6361-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6359-1

  • Online ISBN: 978-1-4939-6361-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics