Skip to main content

Semaphorins and their Signaling Mechanisms

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1493))

Abstract

Semaphorins are extracellular signaling proteins that are essential for the development and maintenance of many organs and tissues. The more than 20-member semaphorin protein family includes secreted, transmembrane and cell surface-attached proteins with diverse structures, each characterized by a single cysteine-rich extracellular sema domain, the defining feature of the family. Early studies revealed that semaphorins function as axon guidance molecules, but it is now understood that semaphorins are key regulators of morphology and motility in many different cell types including those that make up the nervous, cardiovascular, immune, endocrine, hepatic, renal, reproductive, respiratory and musculoskeletal systems, as well as in cancer cells. Semaphorin signaling occurs predominantly through Plexin receptors and results in changes to the cytoskeletal and adhesive machinery that regulate cellular morphology. While much remains to be learned about the mechanisms underlying the effects of semaphorins, exciting work has begun to reveal how semaphorin signaling is fine-tuned through different receptor complexes and other mechanisms to achieve specific outcomes in various cellular contexts and physiological systems. These and future studies will lead to a more complete understanding of semaphorin-mediated development and to a greater understanding of how these proteins function in human disease.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yazdani U, Terman JR (2006) The semaphorins. Genome Biol 7:211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kolodkin AL, Matthes DJ, Goodman CS (1993) The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75:1389–1399

    Article  CAS  PubMed  Google Scholar 

  3. Kolodkin AL, Matthes DJ, O’Connor TP et al (1992) Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron 9:831–845

    Article  CAS  PubMed  Google Scholar 

  4. Raper JA, Kapfhammer JP (1990) The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron 4:21–29

    Article  CAS  PubMed  Google Scholar 

  5. Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75:217–227

    Article  CAS  PubMed  Google Scholar 

  6. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    Article  CAS  PubMed  Google Scholar 

  7. Semaphorin Nomenclature Committee (1999) Unified nomenclature for the semaphorins/collapsins. Cell 97:551–552

    Article  Google Scholar 

  8. Browne K, Wang W, Liu RQ et al (2012) Transmembrane semaphorin5B is proteolytically processed into a repulsive neural guidance cue. J Neurochem 123:135–146

    Article  CAS  PubMed  Google Scholar 

  9. Elhabazi A, Delaire S, Bensussan A et al (2001) Biological activity of soluble CD100. I. The extracellular region of CD100 is released from the surface of T lymphocytes by regulated proteolysis. J Immunol 166:4341–4347

    Article  CAS  PubMed  Google Scholar 

  10. Holmes S, Downs AM, Fosberry A et al (2002) Sema7A is a potent monocyte stimulator. Scand J Immunol 56:270–275

    Article  CAS  PubMed  Google Scholar 

  11. Gherardi E, Love CA, Esnouf RM et al (2004) The sema domain. Curr Opin Struct Biol 14:669–678

    Article  CAS  PubMed  Google Scholar 

  12. Hota PK, Buck M (2012) Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 69:3765–3805

    Article  CAS  PubMed  Google Scholar 

  13. Takamatsu H, Kumanogoh A (2012) Diverse roles for semaphorin-plexin signaling in the immune system. Trends Immunol 33:127–135

    Article  CAS  PubMed  Google Scholar 

  14. Siebold C, Jones EY (2013) Structural insights into semaphorins and their receptors. Semin Cell Dev Biol 24:139–145

    Article  CAS  PubMed  Google Scholar 

  15. Antipenko A, Himanen JP, van Leyen K et al (2003) Structure of the semaphorin-3A receptor binding module. Neuron 39:589–598

    Article  CAS  PubMed  Google Scholar 

  16. Janssen BJ, Malinauskas T, Weir GA et al (2012) Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex. Nat Struct Mol Biol 19:1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janssen BJ, Robinson RA, Perez-Branguli F et al (2010) Structural basis of semaphorin-plexin signalling. Nature 467:1118–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu H, Juo ZS, Shim AH et al (2010) Structural basis of semaphorin-plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1. Cell 142:749–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Love CA, Harlos K, Mavaddat N et al (2003) The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat Struct Biol 10:843–848

    Article  CAS  PubMed  Google Scholar 

  20. Nogi T, Yasui N, Mihara E et al (2010) Structural basis for semaphorin signalling through the plexin receptor. Nature 467:1123–1127

    Article  CAS  PubMed  Google Scholar 

  21. Klostermann A, Lohrum M, Adams RH et al (1998) The chemorepulsive activity of the axonal guidance signal semaphorin D requires dimerization. J Biol Chem 273:7326–7331

    Article  CAS  PubMed  Google Scholar 

  22. Koppel AM, Raper JA (1998) Collapsin-1 covalently dimerizes, and dimerization is necessary for collapsing activity. J Biol Chem 273:15708–15713

    Article  CAS  PubMed  Google Scholar 

  23. Perala N, Sariola H, Immonen T (2012) More than nervous: the emerging roles of plexins. Differentiation 83:77–91

    Article  PubMed  CAS  Google Scholar 

  24. Ohta K, Mizutani A, Kawakami A et al (1995) Plexin: a novel neuronal cell surface molecule that mediates cell adhesion via a homophilic binding mechanism in the presence of calcium ions. Neuron 14:1189–1199

    Article  CAS  PubMed  Google Scholar 

  25. Comeau MR, Johnson R, DuBose RF et al (1998) A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity 8:473–482

    Article  CAS  PubMed  Google Scholar 

  26. Chen H, Chedotal A, He Z et al (1997) Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19:547–559

    Article  CAS  PubMed  Google Scholar 

  27. He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90:739–751

    Article  CAS  PubMed  Google Scholar 

  28. Kolodkin AL, Levengood DV, Rowe EG et al (1997) Neuropilin is a semaphorin III receptor. Cell 90:753–762

    Article  CAS  PubMed  Google Scholar 

  29. Raimondi C, Ruhrberg C (2013) Neuropilin signalling in vessels, neurons and tumours. Semin Cell Dev Biol 24:172–178

    Article  CAS  PubMed  Google Scholar 

  30. Gu C, Yoshida Y, Livet J et al (2005) Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307:265–268

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura F, Tanaka M, Takahashi T et al (1998) Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse. Neuron 21:1093–1100

    Article  CAS  PubMed  Google Scholar 

  32. Renzi MJ, Feiner L, Koppel AM et al (1999) A dominant negative receptor for specific secreted semaphorins is generated by deleting an extracellular domain from neuropilin-1. J Neurosci 19:7870–7880

    CAS  PubMed  Google Scholar 

  33. Tran TS, Rubio ME, Clem RL et al (2009) Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462:1065–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharma A, Verhaagen J, Harvey AR (2012) Receptor complexes for each of the Class 3 Semaphorins. Front Cell Neurosci 6:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumanogoh A, Watanabe C, Lee I et al (2000) Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity 13:621–631

    Article  CAS  PubMed  Google Scholar 

  36. Kumanogoh A, Marukawa S, Suzuki K et al (2002) Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature 419:629–633

    Article  CAS  PubMed  Google Scholar 

  37. Pasterkamp RJ, Peschon JJ, Spriggs MK et al (2003) Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424:398–405

    Article  PubMed  CAS  Google Scholar 

  38. Cho JY, Chak K, Andreone BJ et al (2012) The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev 26:2222–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Wit J, De Winter F, Klooster J et al (2005) Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. Mol Cell Neurosci 29:40–55

    Article  PubMed  CAS  Google Scholar 

  40. Kantor DB, Chivatakarn O, Peer KL et al (2004) Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44:961–975

    Article  CAS  PubMed  Google Scholar 

  41. Cagnoni G, Tamagnone L (2013) Semaphorin receptors meet receptor tyrosine kinases on the way of tumor progression. Oncogene 33:4795–4802

    Article  PubMed  CAS  Google Scholar 

  42. Franco M, Tamagnone L (2008) Tyrosine phosphorylation in semaphorin signalling: shifting into overdrive. EMBO Rep 9:865–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bellon A, Luchino J, Haigh K et al (2010) VEGFR2 (KDR/Flk1) signaling mediates axon growth in response to semaphorin 3E in the developing brain. Neuron 66:205–219

    Article  CAS  PubMed  Google Scholar 

  44. Toyofuku T, Zhang H, Kumanogoh A et al (2004) Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev 18:435–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou Y, Gunput RA, Pasterkamp RJ (2008) Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci 33:161–170

    Article  CAS  PubMed  Google Scholar 

  46. Jongbloets BC, Pasterkamp RJ (2014) Semaphorin signalling during development. Development 141:3292–3297

    Article  CAS  PubMed  Google Scholar 

  47. Casazza A, Fazzari P, Tamagnone L (2007) Semaphorin signals in cell adhesion and cell migration: functional role and molecular mechanisms. Adv Exp Med Biol 600:90–108

    Article  PubMed  Google Scholar 

  48. Hung RJ, Pak CW, Terman JR (2011) Direct redox regulation of F-actin assembly and disassembly by Mical. Science 334:1710–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kolodkin AL, Tessier-Lavigne M (2011) Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb Perspect Biol 3:a001727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kruger RP, Aurandt J, Guan KL (2005) Semaphorins command cells to move. Nat Rev Mol Cell Biol 6:789–800

    Article  CAS  PubMed  Google Scholar 

  51. Pasterkamp RJ, Giger RJ (2009) Semaphorin function in neural plasticity and disease. Curr Opin Neurobiol 19:263–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fan J, Mansfield SG, Redmond T et al (1993) The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J Cell Biol 121:867–878

    Article  CAS  PubMed  Google Scholar 

  53. Hung RJ, Terman JR (2011) Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly. Cytoskeleton (Hoboken) 68:415–433

    CAS  Google Scholar 

  54. Puschel AW (2007) GTPases in semaphorin signaling. Adv Exp Med Biol 600:12–23

    Article  PubMed  Google Scholar 

  55. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, He H, Srivastava N et al (2012) Plexins are GTPase-activating proteins for Rap and are activated by induced dimerization. Sci Signal 5:ra6

    PubMed  PubMed Central  Google Scholar 

  57. Oinuma I, Ishikawa Y, Katoh H et al (2004) The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science 305:862–865

    Article  CAS  PubMed  Google Scholar 

  58. Yang T, Terman JR (2013) Regulating small G protein signaling to coordinate axon adhesion and repulsion. Small GTPases 4:34–41

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2:a001818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kinbara K, Goldfinger LE, Hansen M et al (2003) Ras GTPases: integrins’ friends or foes? Nat Rev Mol Cell Biol 4:767–776

    Article  CAS  PubMed  Google Scholar 

  61. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  CAS  PubMed  Google Scholar 

  62. Chardin P (2006) Function and regulation of Rnd proteins. Nat Rev Mol Cell Biol 7:54–62

    Article  CAS  PubMed  Google Scholar 

  63. Negishi M, Oinuma I, Katoh H (2005) Plexins: axon guidance and signal transduction. Cell Mol Life Sci 62:1363–1371

    Article  CAS  PubMed  Google Scholar 

  64. Hung RJ, Yazdani U, Yoon J et al (2010) Mical links semaphorins to F-actin disassembly. Nature 463:823–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hung RJ, Spaeth CS, Yesilyurt HG et al (2013) SelR reverses Mical-mediated oxidation of actin to regulate F-actin dynamics. Nat Cell Biol 15:1445–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee BC, Peterfi Z, Hoffmann FW et al (2013) MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol Cell 51:397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pasterkamp RJ (2005) R-Ras fills another GAP in semaphorin signalling. Trends Cell Biol 15:61–64

    Article  CAS  PubMed  Google Scholar 

  68. Schmidt EF, Strittmatter SM (2007) The CRMP family of proteins and their role in Sema3A signaling. Adv Exp Med Biol 600:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tojima T, Hines JH, Henley JR et al (2011) Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 12:191–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tojima T, Itofusa R, Kamiguchi H (2010) Asymmetric clathrin-mediated endocytosis drives repulsive growth cone guidance. Neuron 66:370–377

    Article  CAS  PubMed  Google Scholar 

  71. Wolman MA, Liu Y, Tawarayama H et al (2004) Repulsion and attraction of axons by semaphorin3D are mediated by different neuropilins in vivo. J Neurosci 24:8428–8435

    Article  CAS  PubMed  Google Scholar 

  72. Chauvet S, Cohen S, Yoshida Y et al (2007) Gating of Sema3E/PlexinD1 signaling by neuropilin-1 switches axonal repulsion to attraction during brain development. Neuron 56:807–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:567–573

    Article  CAS  PubMed  Google Scholar 

  74. Song H, Ming G, He Z et al (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281:1515–1518

    Article  CAS  PubMed  Google Scholar 

  75. Yang T, Terman JR (2012) 14-3-3epsilon couples protein kinase A to semaphorin signaling and silences plexin RasGAP-mediated axonal repulsion. Neuron 74:108–121

    Article  CAS  PubMed  Google Scholar 

  76. Haklai-Topper L, Mlechkovich G, Savariego D et al (2010) Cis interaction between Semaphorin6A and Plexin-A4 modulates the repulsive response to Sema6A. EMBO J 29:2635–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sun LO, Jiang Z, Rivlin-Etzion M et al (2013) On and off retinal circuit assembly by divergent molecular mechanisms. Science 342:1241974

    Article  PubMed  CAS  Google Scholar 

  78. Suto F, Tsuboi M, Kamiya H et al (2007) Interactions between plexin-A2, plexin-A4, and semaphorin 6A control lamina-restricted projection of hippocampal mossy fibers. Neuron 53:535–547

    Article  CAS  PubMed  Google Scholar 

  79. Mizumoto K, Shen K (2013) Interaxonal interaction defines tiled presynaptic innervation in C. elegans. Neuron 77:655–666

    Article  CAS  PubMed  Google Scholar 

  80. Jeong S, Juhaszova K, Kolodkin AL (2012) The control of semaphorin-1a-mediated reverse signaling by opposing pebble and RhoGAPp190 functions in drosophila. Neuron 76:721–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sweeney LB, Chou YH, Wu Z et al (2011) Secreted semaphorins from degenerating larval ORN axons direct adult projection neuron dendrite targeting. Neuron 72:734–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Law CO, Kirby RJ, Aghamohammadzadeh S et al (2008) The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals. Development 135:2361–2371

    Article  CAS  PubMed  Google Scholar 

  83. Dang P, Smythe E, Furley AJ (2012) TAG1 regulates the endocytic trafficking and signaling of the semaphorin3A receptor complex. J Neurosci 32:10370–10382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Carcea I, Ma’ayan A, Mesias R et al (2010) Flotillin-mediated endocytic events dictate cell type-specific responses to semaphorin 3A. J Neurosci 30:15317–15329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tran TS, Kolodkin AL, Bharadwaj R (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23:263–292

    Article  CAS  PubMed  Google Scholar 

  86. Yoshida Y (2012) Semaphorin signaling in vertebrate neural circuit assembly. Front Mol Neurosci 5:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ruhrberg C, Schwarz Q (2010) In the beginning: generating neural crest cell diversity. Cell Adhes Migr 4:622–630

    Article  Google Scholar 

  88. Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483

    Article  CAS  PubMed  Google Scholar 

  89. Marin O, Yaron A, Bagri A et al (2001) Sorting of striatal and cortical interneurons regulated by semaphorin–neuropilin interactions. Science 293:872–875

    Article  CAS  PubMed  Google Scholar 

  90. Chen G, Sima J, Jin M et al (2008) Semaphorin-3A guides radial migration of cortical neurons during development. Nat Neurosci 11:36–44

    Article  PubMed  CAS  Google Scholar 

  91. Kerjan G, Dolan J, Haumaitre C et al (2005) The transmembrane semaphorin Sema6A controls cerebellar granule cell migration. Nat Neurosci 8:1516–1524

    Article  CAS  PubMed  Google Scholar 

  92. Renaud J, Kerjan G, Sumita I et al (2008) Plexin-A2 and its ligand, Sema6A, control nucleus-centrosome coupling in migrating granule cells. Nat Neurosci 11:440–449

    Article  CAS  PubMed  Google Scholar 

  93. Bron R, Vermeren M, Kokot N et al (2007) Boundary cap cells constrain spinal motor neuron somal migration at motor exit points by a semaphorin-plexin mechanism. Neural Dev 2:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mauti O, Domanitskaya E, Andermatt I et al (2007) Semaphorin6A acts as a gate keeper between the central and the peripheral nervous system. Neural Dev 2:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Vermeren M, Maro GS, Bron R et al (2003) Integrity of developing spinal motor columns is regulated by neural crest derivatives at motor exit points. Neuron 37:403–415

    Article  CAS  PubMed  Google Scholar 

  96. Wang F, Julien DP, Sagasti A (2013) Journey to the skin: somatosensory peripheral axon guidance and morphogenesis. Cell Adhes Migr 7:388–394

    Article  Google Scholar 

  97. Zou Y, Stoeckli E, Chen H et al (2000) Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 102:363–375

    Article  CAS  PubMed  Google Scholar 

  98. Kuwajima T, Yoshida Y, Takegahara N et al (2012) Optic chiasm presentation of Semaphorin6D in the context of Plexin-A1 and Nr-CAM promotes retinal axon midline crossing. Neuron 74:676–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Faulkner RL, Low LK, Liu XB et al (2008) Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling. Neural Dev 3:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Runker AE, Little GE, Suto F et al (2008) Semaphorin-6A controls guidance of corticospinal tract axons at multiple choice points. Neural Dev 3:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Niquille M, Garel S, Mann F et al (2009) Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C. PLoS Biol 7:e1000230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Leighton PA, Mitchell KJ, Goodrich LV et al (2001) Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410:174–179

    Article  CAS  PubMed  Google Scholar 

  103. Winberg ML, Noordermeer JN, Tamagnone L et al (1998) Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 95:903–916

    Article  CAS  PubMed  Google Scholar 

  104. Yu HH, Araj HH, Ralls SA et al (1998) The transmembrane Semaphorin Sema I is required in Drosophila for embryonic motor and CNS axon guidance. Neuron 20:207–220

    Article  CAS  PubMed  Google Scholar 

  105. Bashaw GJ (2007) Semaphorin directs axon traffic in the fly olfactory system. Neuron 53:157–159

    Article  CAS  PubMed  Google Scholar 

  106. Imai T (2012) Positional information in neural map development: lessons from the olfactory system. Develop Growth Differ 54:358–365

    Article  CAS  Google Scholar 

  107. Nishiyama M, Togashi K, von Schimmelmann MJ et al (2011) Semaphorin 3A induces CaV2.3 channel-dependent conversion of axons to dendrites. Nat Cell Biol 13:676–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Shelly M, Cancedda L, Lim BK et al (2011) Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron 71:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yoshida Y, Han B, Mendelsohn M et al (2006) PlexinA1 signaling directs the segregation of proprioceptive sensory axons in the developing spinal cord. Neuron 52:775–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Campbell DS, Regan AG, Lopez JS et al (2001) Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. J Neurosci 21:8538–8547

    CAS  PubMed  Google Scholar 

  111. Liu Y, Berndt J, Su F et al (2004) Semaphorin3D guides retinal axons along the dorsoventral axis of the tectum. J Neurosci 24:310–318

    Article  CAS  PubMed  Google Scholar 

  112. Baier H (2013) Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu Rev Cell Dev Biol 29:385–416

    Article  CAS  PubMed  Google Scholar 

  113. Tawarayama H, Yoshida Y, Suto F et al (2010) Roles of semaphorin-6B and plexin-A2 in lamina-restricted projection of hippocampal mossy fibers. J Neurosci 30:7049–7060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Oh WJ, Gu C (2013) The role and mechanism-of-action of Sema3E and Plexin-D1 in vascular and neural development. Semin Cell Dev Biol 24:156–162

    Article  CAS  PubMed  Google Scholar 

  115. Tillo M, Ruhrberg C, Mackenzie F (2012) Emerging roles for semaphorins and VEGFs in synaptogenesis and synaptic plasticity. Cell Adhes Migr 6:541–546

    Article  Google Scholar 

  116. Vanderhaeghen P, Cheng HJ (2010) Guidance molecules in axon pruning and cell death. Cold Spring Harb Perspect Biol 2:a001859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Joo WJ, Sweeney LB, Liang L et al (2013) Linking cell fate, trajectory choice, and target selection: genetic analysis of Sema-2b in olfactory axon targeting. Neuron 78:673–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Riccomagno MM, Hurtado A, Wang H et al (2012) The RacGAP beta2-Chimaerin selectively mediates axonal pruning in the hippocampus. Cell 149:1594–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mann F, Chauvet S, Rougon G (2007) Semaphorins in development and adult brain: implication for neurological diseases. Prog Neurobiol 82:57–79

    Article  CAS  PubMed  Google Scholar 

  120. Yaron A, Zheng B (2007) Navigating their way to the clinic: emerging roles for axon guidance molecules in neurological disorders and injury. Dev Neurobiol 67:1216–1231

    Article  CAS  PubMed  Google Scholar 

  121. Lalani SR, Safiullah AM, Molinari LM et al (2004) SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet 41:e94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gant JC, Thibault O, Blalock EM et al (2009) Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: implications for autism and epilepsy. Epilepsia 50:629–645

    Article  CAS  PubMed  Google Scholar 

  123. Yang J, Houk B, Shah J et al (2005) Genetic background regulates semaphorin gene expression and epileptogenesis in mouse brain after kainic acid status epilepticus. Neuroscience 131:853–869

    Article  CAS  PubMed  Google Scholar 

  124. Fujii T, Uchiyama H, Yamamoto N et al (2011) Possible association of the semaphorin 3D gene (SEMA3D) with schizophrenia. J Psychiatr Res 45:47–53

    Article  PubMed  Google Scholar 

  125. Mah S, Nelson MR, Delisi LE et al (2006) Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Mol Psychiatry 11:471–478

    Article  CAS  PubMed  Google Scholar 

  126. Runker AE, O’Tuathaigh C, Dunleavy M et al (2011) Mutation of Semaphorin-6A disrupts limbic and cortical connectivity and models neurodevelopmental psychopathology. PLoS One 6:e26488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wray NR, James MR, Mah SP et al (2007) Anxiety and comorbid measures associated with PLXNA2. Arch Gen Psychiatry 64:318–326

    Article  CAS  PubMed  Google Scholar 

  128. Rujescu D, Meisenzahl EM, Krejcova S et al (2007) Plexin B3 is genetically associated with verbal performance and white matter volume in human brain. Mol Psychiatry 12:190–194, 115

    Google Scholar 

  129. Good PF, Alapat D, Hsu A et al (2004) A role for semaphorin 3A signaling in the degeneration of hippocampal neurons during Alzheimer’s disease. J Neurochem 91:716–736

    Article  CAS  PubMed  Google Scholar 

  130. Uchida Y, Ohshima T, Sasaki Y et al (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 10:165–179

    Article  CAS  PubMed  Google Scholar 

  131. Clarimon J, Scholz S, Fung HC et al (2006) Conflicting results regarding the semaphorin gene (SEMA5A) and the risk for Parkinson disease. Am J Hum Genet 78:1082–1084, author reply 1092–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Maraganore DM, de Andrade M, Lesnick TG et al (2005) High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 77:685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Van Battum EY, Brignani S, Pasterkamp RJ (2015) Axon guidance proteins in neurological disorders. Lancet Neurol 14:532–546

    Article  PubMed  CAS  Google Scholar 

  134. Kotter MR, Stadelmann C, Hartung HP (2011) Enhancing remyelination in disease--can we wrap it up? Brain 134:1882–1900

    Article  PubMed  Google Scholar 

  135. Fawcett JW, Schwab ME, Montani L et al (2012) Defeating inhibition of regeneration by scar and myelin components. Handb Clin Neurol 109:503–522

    Article  PubMed  Google Scholar 

  136. Giger RJ, Hollis ER 2nd, Tuszynski MH (2010) Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol 2:a001867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Armendariz BG, Bribian A, Perez-Martinez E et al (2012) Expression of Semaphorin 4F in neurons and brain oligodendrocytes and the regulation of oligodendrocyte precursor migration in the optic nerve. Mol Cell Neurosci 49:54–67

    Article  CAS  PubMed  Google Scholar 

  138. Bernard F, Moreau-Fauvarque C, Heitz-Marchaland C et al (2012) Role of transmembrane semaphorin Sema6A in oligodendrocyte differentiation and myelination. Glia 60:1590–1604

    Article  PubMed  Google Scholar 

  139. Cohen RI (2005) Exploring oligodendrocyte guidance: ‘to boldly go where no cell has gone before’. Cell Mol Life Sci 62:505–510

    Article  CAS  PubMed  Google Scholar 

  140. Leslie JR, Imai F, Fukuhara K et al (2011) Ectopic myelinating oligodendrocytes in the dorsal spinal cord as a consequence of altered semaphorin 6D signaling inhibit synapse formation. Development 138:4085–4095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xiang X, Zhang X, Huang QL (2012) Plexin A3 is involved in semaphorin 3F-mediated oligodendrocyte precursor cell migration. Neurosci Lett 530:127–132

    Article  CAS  PubMed  Google Scholar 

  142. Yamaguchi W, Tamai R, Kageura M et al (2012) Sema4D as an inhibitory regulator in oligodendrocyte development. Mol Cell Neurosci 49:290–299

    Article  CAS  PubMed  Google Scholar 

  143. Syed YA, Hand E, Mobius W et al (2011) Inhibition of CNS remyelination by the presence of semaphorin 3A. J Neurosci 31:3719–3728

    Article  CAS  PubMed  Google Scholar 

  144. Giacobini P, Prevot V (2013) Semaphorins in the development, homeostasis and disease of hormone systems. Semin Cell Dev Biol 24:190–198

    Article  CAS  PubMed  Google Scholar 

  145. Messina A, Giacobini P (2013) Semaphorin signaling in the development and function of the gonadotropin hormone-releasing hormone system. Front Endocrinol 4:133

    Article  Google Scholar 

  146. Herbison AE (2006) Physiology of the gonadotropin-releasing hormone neuronal network. In: Knobil E, Neill JD (eds) Physiology of Reproduction, 3rd edn. Elsevier, New York, pp 1415–1482

    Google Scholar 

  147. Giacobini P, Messina A, Morello F et al (2008) Semaphorin 4D regulates gonadotropin hormone-releasing hormone-1 neuronal migration through PlexinB1-Met complex. J Cell Biol 183:555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Messina A, Ferraris N, Wray S et al (2011) Dysregulation of Semaphorin7A/beta1-integrin signaling leads to defective GnRH-1 cell migration, abnormal gonadal development and altered fertility. Hum Mol Genet 20:4759–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cariboni A, Hickok J, Rakic S et al (2007) Neuropilins and their ligands are important in the migration of gonadotropin-releasing hormone neurons. J Neurosci 27:2387–2395

    Article  CAS  PubMed  Google Scholar 

  150. Cariboni A, Davidson K, Rakic S et al (2011) Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism. Hum Mol Genet 20:336–344

    Article  CAS  PubMed  Google Scholar 

  151. Parkash J, Messina A, Langlet F et al (2015) Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun 6:6385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Regev A, Goldman S, Shalev E (2007) Semaphorin-4D (Sema-4D), the Plexin-B1 ligand, is involved in mouse ovary follicular development. Reprod Biol Endocrinol 5:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Dacquin R, Domenget C, Kumanogoh A et al (2011) Control of bone resorption by semaphorin 4D is dependent on ovarian function. PLoS One 6:e26627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436:193–200

    Article  CAS  PubMed  Google Scholar 

  155. Gelfand MV, Hong S, Gu C (2009) Guidance from above: common cues direct distinct signaling outcomes in vascular and neural patterning. Trends Cell Biol 19:99–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2:a001875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Tamagnone L, Mazzone M (2011) Semaphorin signals on the road of endothelial tip cells. Dev Cell 21:189–190

    Article  CAS  PubMed  Google Scholar 

  158. van der Zwaag B, Hellemons AJ, Leenders WP et al (2002) PLEXIN-D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis. Dev Dyn 225:336–343

    Article  PubMed  CAS  Google Scholar 

  159. Behar O, Golden JA, Mashimo H et al (1996) Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383:525–528

    Article  CAS  PubMed  Google Scholar 

  160. Feiner L, Webber AL, Brown CB et al (2001) Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128:3061–3070

    CAS  PubMed  Google Scholar 

  161. Gitler AD, Lu MM, Epstein JA (2004) PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev Cell 7:107–116

    Article  CAS  PubMed  Google Scholar 

  162. Toyofuku T, Kikutani H (2007) Semaphorin signaling during cardiac development. Adv Exp Med Biol 600:109–117

    Article  PubMed  Google Scholar 

  163. Ieda M, Fukuda K (2009) New aspects for the treatment of cardiac diseases based on the diversity of functional controls on cardiac muscles: the regulatory mechanisms of cardiac innervation and their critical roles in cardiac performance. J Pharmacol Sci 109:348–353

    Article  CAS  PubMed  Google Scholar 

  164. Bouvree K, Brunet I, Del Toro R et al (2012) Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation. Circ Res 111:437–445

    Article  CAS  PubMed  Google Scholar 

  165. Jurisic G, Maby-El Hajjami H, Karaman S et al (2012) An unexpected role of semaphorin3a-neuropilin-1 signaling in lymphatic vessel maturation and valve formation. Circ Res 111:426–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Azzi S, Hebda JK, Gavard J (2013) Vascular permeability and drug delivery in cancers. Front Oncol 3:211

    Article  PubMed  PubMed Central  Google Scholar 

  167. Treps L, Le Guelte A, Gavard J (2013) Emerging roles of Semaphorins in the regulation of epithelial and endothelial junctions. Tissue Barriers 1:e23272

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wannemacher KM, Wang L, Zhu L et al (2011) The role of semaphorins and their receptors in platelets: lessons learned from neuronal and immune synapses. Platelets 22:461–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chauvet S, Burk K, Mann F (2013) Navigation rules for vessels and neurons: cooperative signaling between VEGF and neural guidance cues. Cell Mol Life Sci 70:1685–1703

    Article  CAS  PubMed  Google Scholar 

  170. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2:a006502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Bougeret C, Mansur IG, Dastot H et al (1992) Increased surface expression of a newly identified 150-kDa dimer early after human T lymphocyte activation. J Immunol 148:318–323

    CAS  PubMed  Google Scholar 

  172. Delaire S, Elhabazi A, Bensussan A et al (1998) CD100 is a leukocyte semaphorin. Cell Mol Life Sci 54:1265–1276

    Article  CAS  PubMed  Google Scholar 

  173. Kumanogoh A, Kikutani H (2013) Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat Rev Immunol 13:802–814

    Article  PubMed  CAS  Google Scholar 

  174. Roney K, Holl E, Ting J (2013) Immune plexins and semaphorins: old proteins, new immune functions. Protein Cell 4:17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Suzuki K, Kumanogoh A, Kikutani H (2008) Semaphorins and their receptors in immune cell interactions. Nat Immunol 9:17–23

    Article  CAS  PubMed  Google Scholar 

  176. Mendes-da-Cruz DA, Stimamiglio MA, Munoz JJ et al (2012) Developing T-cell migration: role of semaphorins and ephrins. FASEB J 26:4390–4399

    Article  CAS  PubMed  Google Scholar 

  177. Garcia F, Lepelletier Y, Smaniotto S et al (2012) Inhibitory effect of semaphorin-3A, a known axon guidance molecule, in the human thymocyte migration induced by CXCL12. J Leukoc Biol 91:7–13

    Article  CAS  PubMed  Google Scholar 

  178. Lepelletier Y, Smaniotto S, Hadj-Slimane R et al (2007) Control of human thymocyte migration by Neuropilin-1/Semaphorin-3A-mediated interactions. Proc Natl Acad Sci U S A 104:5545–5550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Choi YI, Duke-Cohan JS, Ahmed WB et al (2008) PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla. Immunity 29:888–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Takamatsu H, Takegahara N, Nakagawa Y et al (2010) Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nat Immunol 11:594–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kumanogoh A, Shikina T, Suzuki K et al (2005) Nonredundant roles of Sema4A in the immune system: defective T cell priming and Th1/Th2 regulation in Sema4A-deficient mice. Immunity 22:305–316

    Article  CAS  PubMed  Google Scholar 

  182. Kumanogoh A, Suzuki K, Ch’ng E et al (2002) Requirement for the lymphocyte semaphorin, CD100, in the induction of antigen-specific T cells and the maturation of dendritic cells. J Immunol 169:1175–1181

    Article  CAS  PubMed  Google Scholar 

  183. Nakatsuji Y, Okuno T, Moriya M et al (2012) Elevation of Sema4A implicates Th cell skewing and the efficacy of IFN-beta therapy in multiple sclerosis. J Immunol 188:4858–4865

    Article  CAS  PubMed  Google Scholar 

  184. Okuno T, Nakatsuji Y, Moriya M et al (2010) Roles of Sema4D-plexin-B1 interactions in the central nervous system for pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 184:1499–1506

    Article  CAS  PubMed  Google Scholar 

  185. Shi W, Kumanogoh A, Watanabe C et al (2000) The class IV semaphorin CD100 plays nonredundant roles in the immune system: defective B and T cell activation in CD100-deficient mice. Immunity 13:633–642

    Article  CAS  PubMed  Google Scholar 

  186. Takegahara N, Takamatsu H, Toyofuku T et al (2006) Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat Cell Biol 8:615–622

    Article  CAS  PubMed  Google Scholar 

  187. Nakagawa Y, Takamatsu H, Okuno T et al (2011) Identification of semaphorin 4B as a negative regulator of basophil-mediated immune responses. J Immunol 186:2881–2888

    Article  CAS  PubMed  Google Scholar 

  188. Kang S, Okuno T, Takegahara N et al (2012) Intestinal epithelial cell-derived semaphorin 7A negatively regulates development of colitis via alphavbeta1 integrin. J Immunol 188:1108–1116

    Article  CAS  PubMed  Google Scholar 

  189. Suzuki K, Okuno T, Yamamoto M et al (2007) Semaphorin 7A initiates T-cell-mediated inflammatory responses through alpha1beta1 integrin. Nature 446:680–684

    Article  CAS  PubMed  Google Scholar 

  190. Harre U, Schett G (2013) Bone research in 2012: the ups and downs of bone in health and rheumatic disease. Nat Rev Rheumatol 9:67–68

    Article  PubMed  Google Scholar 

  191. Kang S, Kumanogoh A (2013) Semaphorins in bone development, homeostasis, and disease. Semin Cell Dev Biol 24:163–171

    Article  CAS  PubMed  Google Scholar 

  192. Del Fattore A, Teti A, Rucci N (2012) Bone cells and the mechanisms of bone remodelling. Front Biosci (Elite Ed) 4:2302–2321

    Article  Google Scholar 

  193. Nakahama K (2010) Cellular communications in bone homeostasis and repair. Cell Mol Life Sci 67:4001–4009

    Article  CAS  PubMed  Google Scholar 

  194. Hayashi M, Nakashima T, Taniguchi M et al (2012) Osteoprotection by semaphorin 3A. Nature 485:69–74

    Article  CAS  PubMed  Google Scholar 

  195. Fukuda T, Takeda S, Xu R et al (2013) Sema3A regulates bone-mass accrual through sensory innervations. Nature 497:490–493

    Article  CAS  PubMed  Google Scholar 

  196. Kaifu T, Nakahara J, Inui M et al (2003) Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest 111:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Koga T, Inui M, Inoue K et al (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763

    Article  CAS  PubMed  Google Scholar 

  198. Negishi-Koga T, Shinohara M, Komatsu N et al (2011) Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17:1473–1480

    Article  CAS  PubMed  Google Scholar 

  199. Hwang JY, Lee JY, Park MH et al (2006) Association of PLXNA2 polymorphisms with vertebral fracture risk and bone mineral density in postmenopausal Korean population. Osteoporos Int 17:1592–1601

    Article  CAS  PubMed  Google Scholar 

  200. Koh JM, Oh B, Lee JY et al (2006) Association study of semaphorin 7a (sema7a) polymorphisms with bone mineral density and fracture risk in postmenopausal Korean women. J Hum Genet 51:112–117

    Article  CAS  PubMed  Google Scholar 

  201. Sutton AL, Zhang X, Dowd DR et al (2008) Semaphorin 3B is a 1,25-Dihydroxyvitamin D3-induced gene in osteoblasts that promotes osteoclastogenesis and induces osteopenia in mice. Mol Endocrinol 22:1370–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Michos O (2009) Kidney development: from ureteric bud formation to branching morphogenesis. Curr Opin Genet Dev 19:484–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Reidy K, Tufro A (2011) Semaphorins in kidney development and disease: modulators of ureteric bud branching, vascular morphogenesis, and podocyte-endothelial crosstalk. Pediatr Nephrol 26:1407–1412

    Article  PubMed  PubMed Central  Google Scholar 

  204. Tapia R, Guan F, Gershin I et al (2008) Semaphorin3a disrupts podocyte foot processes causing acute proteinuria. Kidney Int 73:733–740

    Article  CAS  PubMed  Google Scholar 

  205. Veron D, Reidy KJ, Bertuccio C et al (2010) Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int 77:989–999

    Article  CAS  PubMed  Google Scholar 

  206. Kagoshima M, Ito T (2001) Diverse gene expression and function of semaphorins in developing lung: positive and negative regulatory roles of semaphorins in lung branching morphogenesis. Genes Cells 6:559–571

    Article  CAS  PubMed  Google Scholar 

  207. Roche J, Boldog F, Robinson M et al (1996) Distinct 3p21.3 deletions in lung cancer and identification of a new human semaphorin. Oncogene 12:1289–1297

    CAS  PubMed  Google Scholar 

  208. Sekido Y, Bader S, Latif F et al (1996) Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc Natl Acad Sci U S A 93:4120–4125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Xiang RH, Hensel CH, Garcia DK et al (1996) Isolation of the human semaphorin III/F gene (SEMA3F) at chromosome 3p21, a region deleted in lung cancer. Genomics 32:39–48

    Article  CAS  PubMed  Google Scholar 

  210. Potiron VA, Roche J, Drabkin HA (2009) Semaphorins and their receptors in lung cancer. Cancer Lett 273:1–14

    Article  CAS  PubMed  Google Scholar 

  211. Gu C, Giraudo E (2013) The role of semaphorins and their receptors in vascular development and cancer. Exp Cell Res 319:1306–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Tamagnone L (2012) Emerging role of semaphorins as major regulatory signals and potential therapeutic targets in cancer. Cancer Cell 22:145–152

    Article  CAS  PubMed  Google Scholar 

  213. Neufeld G, Sabag AD, Rabinovicz N et al (2012) Semaphorins in angiogenesis and tumor progression. Cold Spring Harb Perspect Med 2:a006718

    Article  PubMed  PubMed Central  Google Scholar 

  214. Thirant C, Gavard J, Junier MP et al (2013) Critical multiple angiogenic factors secreted by glioblastoma stem-like cells underline the need for combinatorial anti-angiogenic therapeutic strategies. Proteomics Clin Appl 7:79–90

    Article  CAS  PubMed  Google Scholar 

  215. Bachelder RE, Lipscomb EA, Lin X et al (2003) Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res 63:5230–5233

    CAS  PubMed  Google Scholar 

  216. Pan H, Bachelder RE (2010) Autocrine Semaphorin3A stimulates eukaryotic initiation factor 4E-dependent RhoA translation in breast tumor cells. Exp Cell Res 316:2825–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Herman JG, Meadows GG (2007) Increased class 3 semaphorin expression modulates the invasive and adhesive properties of prostate cancer cells. Int J Oncol 30:1231–1238

    CAS  PubMed  Google Scholar 

  218. Tomizawa Y, Sekido Y, Kondo M et al (2001) Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci U S A 98:13954–13959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Xiang R, Davalos AR, Hensel CH et al (2002) Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice. Cancer Res 62:2637–2643

    CAS  PubMed  Google Scholar 

  220. Catalano A, Lazzarini R, Di Nuzzo S et al (2009) The plexin-A1 receptor activates vascular endothelial growth factor-receptor 2 and nuclear factor-kappaB to mediate survival and anchorage-independent growth of malignant mesothelioma cells. Cancer Res 69:1485–1493

    Article  CAS  PubMed  Google Scholar 

  221. Basile JR, Barac A, Zhu T et al (2004) Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res 64:5212–5224

    Article  CAS  PubMed  Google Scholar 

  222. Basile JR, Castilho RM, Williams VP et al (2006) Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. Proc Natl Acad Sci U S A 103:9017–9022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Sierra JR, Corso S, Caione L et al (2008) Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. J Exp Med 205:1673–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Bielenberg DR, Hida Y, Shimizu A et al (2004) Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest 114:1260–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Maione F, Molla F, Meda C et al (2009) Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models. J Clin Invest 119:3356–3372

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Squadrito ML, De Palma M (2011) Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Asp Med 32:123–145

    Article  CAS  Google Scholar 

  227. Barberis D, Casazza A, Sordella R et al (2005) p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling. J Cell Sci 118:4689–4700

    Article  CAS  PubMed  Google Scholar 

  228. Sun T, Krishnan R, Swiercz JM (2012) Grb2 mediates semaphorin-4D-dependent RhoA inactivation. J Cell Sci 125:3557–3567

    Article  CAS  PubMed  Google Scholar 

  229. Swiercz JM, Kuner R, Behrens J et al (2002) Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35:51–63

    Article  CAS  PubMed  Google Scholar 

  230. Swiercz JM, Kuner R, Offermanns S (2004) Plexin-B1/RhoGEF-mediated RhoA activation involves the receptor tyrosine kinase ErbB-2. J Cell Biol 165:869–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Swiercz JM, Worzfeld T, Offermanns S (2008) ErbB-2 and met reciprocally regulate cellular signaling via plexin-B1. J Biol Chem 283:1893–1901

    Article  CAS  PubMed  Google Scholar 

  232. Chak K, Kolodkin AL (2014) Function of the Drosophila receptor guanylyl cyclase Gyc76C in PlexA-mediated motor axon guidance. Development 141:136–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Nagai H, Sugito N, Matsubara H et al (2007) CLCP1 interacts with semaphorin 4B and regulates motility of lung cancer cells. Oncogene 26:4025–4031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jeroen Pasterkamp for helpful comments on the manuscript. This work was supported by NIH (NS073968 and MH085923) and Welch Foundation (I-1749) grants to J.R.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Terman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Alto, L.T., Terman, J.R. (2017). Semaphorins and their Signaling Mechanisms. In: Terman, J. (eds) Semaphorin Signaling. Methods in Molecular Biology, vol 1493. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6448-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6448-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6446-8

  • Online ISBN: 978-1-4939-6448-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics