Skip to main content

Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography–Tandem Mass Spectrometry

  • Protocol
  • First Online:
Book cover Poly(ADP-Ribose) Polymerase

Abstract

ADP-ribosylation is a posttranslational modification (PTM) that affects a variety of cellular processes. In recent years, mass spectrometry (MS)-based proteomics has become a valuable tool for studying ADP-ribosylation. However, studying this PTM in vivo in an unbiased and sensitive manner has remained a difficult challenge. Here, we describe a detailed protocol for unbiased analysis of ADP-ribosylated proteins and their ADP-ribose acceptor sites under physiological conditions. The method relies on the enrichment of mono-ADP-ribosylated peptides using the macrodomain Af1521 in combination with liquid chromatography–high-resolution tandem MS (LC-MS/MS). The 5-day protocol explains the step-by-step enrichment and identification of ADP-ribosylated peptides from cell culture stage all the way through to data processing using the MaxQuant software suite.

*These authors equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954. doi:10.1016/j.cell.2006.06.057

    Article  CAS  PubMed  Google Scholar 

  2. Rack JG, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, Qu Y, Ortmayer M, Leidecker O, Cameron DR, Matic I, Peleg AY, Leys D, Traven A, Ahel I (2015) Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens. Mol Cell 59(2):309–320. doi:10.1016/j.molcel.2015.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO (2009) Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res 37(11):3723–3738. doi:10.1093/nar/gkp229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vandekerckhove J, Schering B, Barmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225(1–2):48–52

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Wang J, Ding M, Yu Y (2013) Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat Methods 10(10):981–984. doi:10.1038/nmeth.2603. http://www.nature.com/nmeth/journal/v10/n10/abs/nmeth.2603.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  6. Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426. doi:10.1038/ncomms5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McDonald LJ, Moss J (1994) Enzymatic and nonenzymatic ADP-ribosylation of cysteine. Mol Cell Biochem 138(1–2):221–226

    Article  CAS  PubMed  Google Scholar 

  8. Daniels CM, Ong SE, Leung AK (2014) Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. J Proteome Res 13(8):3510–3522. doi:10.1021/pr401032q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Min W, Cortes U, Herceg Z, Tong WM, Wang ZQ (2010) Deletion of the nuclear isoform of poly(ADP-ribose) glycohydrolase (PARG) reveals its function in DNA repair, genomic stability and tumorigenesis. Carcinogenesis 31(12):2058–2065. doi:10.1093/carcin/bgq205

    Article  CAS  PubMed  Google Scholar 

  10. Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M, Takahashi H, Miwa M (2004) Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc Natl Acad Sci U S A 101(1):82–86. doi:10.1073/pnas.2237114100

    Article  CAS  PubMed  Google Scholar 

  11. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 103(48):18314–18319. doi:10.1073/pnas.0606528103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 12(12):3444–3452. doi:10.1074/mcp.O113.034181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH, Lin H, Schwede F, Yu Y, Kraus WL (2016) Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353(6294):45–50. doi:10.1126/science.aaf7865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martello R, Leutert M, Jungmichel S, Bilan V, Larsen SC, Young C, Hottiger MO, Nielsen ML (2016) Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat Commun 7:12917. doi:10.1038/ncomms12917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dani N, Stilla A, Marchegiani A, Tamburro A, Till S, Ladurner AG, Corda D, Di Girolamo M (2009) Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. Proc Natl Acad Sci U S A 106(11):4243–4248. doi:10.1073/pnas.0900066106. 0900066106 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonicalzi ME, Haince JF, Droit A, Poirier GG (2005) Regulation of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase: where and when? Cell Mol Life Sci 62(7–8):739–750. doi:10.1007/s00018-004-4505-1

    Article  CAS  PubMed  Google Scholar 

  17. Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML (2013) Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses. Mol Cell 52(2):272–285. doi:10.1016/j.molcel.2013.08.026

    Article  CAS  PubMed  Google Scholar 

  18. Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG (2005) The macro domain is an ADP-ribose binding module. EMBO J 24(11):1911–1920. doi:10.1038/sj.emboj.7600664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. doi:10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  20. Kelstrup CD, Young C, Lavallee R, Nielsen ML, Olsen JV (2012) Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J Proteome Res 11(6):3487–3497. doi:10.1021/pr3000249

    Article  CAS  PubMed  Google Scholar 

  21. Poulsen JW, Madsen CT, Young C, Poulsen FM, Nielsen ML (2013) Using guanidine-hydrochloride for fast and efficient protein digestion and single-step affinity-purification mass spectrometry. J Proteome Res 12(2):1020–1030. doi:10.1021/pr300883y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ms. Monika Fey is acknowledged for the expression and purification of recombinant human PARG (University of Zurich) and Paolo Nanni for technical support for the MS measurements (FGCZ, University of Zurich). We also thank Felix R. Althaus (Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse) for providing hPARG expressing baculo virus. Stephan Christen and Deena Leslie Petrioli provided editorial assistance and critical input during the writing (University of Zurich). The work carried out in the laboratory of MLN was in part supported by the Novo Nordisk Foundation Center for Protein Research; the Novo Nordisk Foundation (grant number NNF14CC0001 and NNF13OC0006477); the Lundbeck Foundation (Grant number R171-2014-1496); The Danish Council of Independent Research, grant agreement number DFF 4002-00051 (Sapere Aude) and grant agreement number DFF 4183-00322A. ADP-ribosylation research in the laboratory of MOH is funded by the Kanton of Zurich, the University Research Priority Program (URPP) in Translational Cancer Biology at the University of Zurich, and the Swiss National Science Foundation (grant 310030B_138667).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Larsen, S.C. et al. (2017). Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography–Tandem Mass Spectrometry. In: Tulin, A. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 1608. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6993-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6993-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6992-0

  • Online ISBN: 978-1-4939-6993-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics