Skip to main content

Predicting Secretory Proteins with SignalP

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1611))

Abstract

SignalP is the currently most widely used program for prediction of signal peptides from amino acid sequences. Proteins with signal peptides are targeted to the secretory pathway, but are not necessarily secreted. After a brief introduction to the biology of signal peptides and the history of signal peptide prediction, this chapter will describe all the options of the current version of SignalP and the details of the output from the program. The chapter includes a case study where the scores of SignalP were used in a novel way to predict the functional effects of amino acid substitutions in signal peptides.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. von Heijne G (1990) The signal peptide. J Membr Biol 115:195–201. doi:10.1007/BF01868635

    Article  Google Scholar 

  2. Pohlschröder M, Prinz WA, Hartmann E, Beckwith J (1997) Protein translocation in the three domains of life: variations on a theme. Cell 91:563–566. doi:10.1016/S0092-8674(00)80443-2

    Article  PubMed  Google Scholar 

  3. Dalbey RE, Lively MO, Bron S, Dijl JMV (1997) The chemistry and enzymology of the type I signal peptidases. Protein Sci 6:1129–1138. doi:10.1002/pro.5560060601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. von Heijne G (1988) Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta Rev Biomembr 947:307–333. doi:10.1016/0304-4157(88)90013-5

    Article  Google Scholar 

  5. Harter C, Wieland F (1996) The secretory pathway: mechanisms of protein sorting and transport. Biochim Biophys Acta Rev Biomembr 1286:75–93. doi:10.1016/0304-4157(96)00003-2

    Article  Google Scholar 

  6. Ferguson MAJ, Williams AF (1988) Cell-surface anchoring of proteins via Glycosyl-phosphatidylinositol structures. Annu Rev Biochem 57:285–320. doi:10.1146/annurev.bi.57.070188.001441

    Article  CAS  PubMed  Google Scholar 

  7. Duong F, Eichler J, Price A et al (1997) Biogenesis of the gram-negative bacterial envelope. Cell 91:567–573. doi:10.1016/S0092-8674(00)80444-4

    Article  CAS  PubMed  Google Scholar 

  8. Mazmanian SK, Liu G, Ton-That H, Schneewind O (1999) Staphylococcus aureus Sortase, an enzyme that anchors surface proteins to the Cell Wall. Science 285:760–763. doi:10.1126/science.285.5428.760

    Article  CAS  PubMed  Google Scholar 

  9. von Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21. doi:10.1111/j.1432-1033.1983.tb07424.x

    Article  Google Scholar 

  10. McGeoch DJ (1985) On the predictive recognition of signal peptide sequences. Virus Res 3:271–286. doi:10.1016/0168-1702(85)90051-6

    Article  CAS  PubMed  Google Scholar 

  11. von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690. doi:10.1093/nar/14.11.4683

    Article  Google Scholar 

  12. Ladunga I, Czakó F, Csabai I, Geszti T (1991) Improving signal peptide prediction accuracy by simulated neural network. Comput Appl Biosci 7:485–487. doi:10.1093/bioinformatics/7.4.485

    CAS  PubMed  Google Scholar 

  13. Schneider G, Wrede P (1993) Development of artificial neural filters for pattern recognition in protein sequences. J Mol Evol 36:586–595. doi:10.1007/BF00556363

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen H, Brunak S, Engelbrecht J, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6. doi:10.1093/protein/10.1.1

    Article  CAS  PubMed  Google Scholar 

  15. Nielsen H, Engelbrecht J, Brunak S, Heijne GV (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8:581–599. doi:10.1142/S0129065797000537

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 6:122–130

    CAS  PubMed  Google Scholar 

  17. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795. doi:10.1016/j.jmb.2004.05.028

    Article  PubMed  Google Scholar 

  18. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. doi:10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

  19. Menne KML, Hermjakob H, Apweiler R (2000) A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics 16:741–742. doi:10.1093/bioinformatics/16.8.741

    Article  CAS  PubMed  Google Scholar 

  20. Klee E, Ellis L (2005) Evaluating eukaryotic secreted protein prediction. BMC Bioinformatics 6:1–7. doi:10.1186/1471-2105-6-256

    Article  Google Scholar 

  21. Choo K, Tan T, Ranganathan S (2009) A comprehensive assessment of N-terminal signal peptides prediction methods. BMC Bioinformatics 10:S2. doi:10.1186/1471-2105-10-S15-S2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Li Y, Li Y (2009) Evaluating signal peptide prediction methods for gram-positive bacteria. Biologia (Bratisl) 64:655–659. doi:10.2478/s11756-009-0118-3

    Google Scholar 

  23. Käll L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036. doi:10.1016/j.jmb.2004.03.016

    Article  PubMed  Google Scholar 

  24. Reynolds SM, Käll L, Riffle ME et al (2008) Transmembrane topology and signal peptide prediction using dynamic Bayesian networks. PLoS Comput Biol 4:e1000213. doi:10.1371/journal.pcbi.1000213

    Article  PubMed  PubMed Central  Google Scholar 

  25. Viklund H, Bernsel A, Skwark M, Elofsson A (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24:2928–2929. doi:10.1093/bioinformatics/btn550

    Article  CAS  PubMed  Google Scholar 

  26. Cygwin. https://cygwin.com/. Accessed 30 May 2016

  27. MobaXterm free Xserver and tabbed SSH client for Windows. http://mobaxterm.mobatek.net/. Accessed 30 May 2016

  28. Fraser CM, Gocayne JD, White O et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–404. doi:10.1126/science.270.5235.397

    Article  CAS  PubMed  Google Scholar 

  29. Ivankov DN, Payne SH, Galperin MY et al (2013) How many signal peptides are there in bacteria? Environ Microbiol 15:983–990. doi:10.1111/1462-2920.12105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. gnuplot homepage. http://www.gnuplot.info/. Accessed 30 May 2016

  31. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi:10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  32. TMHMM Server, v. 2.0. http://www.cbs.dtu.dk/services/TMHMM/. Accessed 30 May 2016

  33. Henrik Nielsen D-4128-2011—ResearcherID.com. http://www.researcherid.com/rid/D-4128-2011. Accessed 30 May 2016

  34. Hon LS, Zhang Y, Kaminker JS, Zhang Z (2009) Computational prediction of the functional effects of amino acid substitutions in signal peptides using a model-based approach. Hum Mutat 30:99–106. doi:10.1002/humu.20798

    Article  PubMed  Google Scholar 

  35. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814. doi:10.1093/nar/gkg509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vaser R, Adusumalli S, Leng SN et al (2016) SIFT missense predictions for genomes. Nat Protoc 11:1–9. doi:10.1038/nprot.2015.123

    Article  CAS  PubMed  Google Scholar 

  37. SIFT—Predict effects of nonsynonmous/missense variants. http://sift.bii.a-star.edu.sg/. Accessed 30 May 2016

  38. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi:10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Niroula A, Urolagin S, Vihinen M (2015) PON-P2: prediction method for fast and reliable identification of harmful variants. PLoS One 10:e0117380. doi:10.1371/journal.pone.0117380

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hecht M, Bromberg Y, Rost B (2015) Better prediction of functional effects for sequence variants. BMC Genomics 16:S1. doi:10.1186/1471-2164-16-S8-S1

    Article  PubMed  PubMed Central  Google Scholar 

  41. Qin W, Li Y, Li J et al (2012) Predicting deleterious non-synonymous single nucleotide polymorphisms in signal peptides based on hybrid sequence attributes. Comput Biol Chem 36:31–35. doi:10.1016/j.compbiolchem.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  42. Nielsen H, Engelbrecht J, von Heijne G, Brunak S (1996) Defining a similarity threshold for a functional protein sequence pattern: the signal peptide cleavage site. Proteins Struct Funct Bioinforma 24:165–177. doi:10.1002/(SICI)1097-0134(199602)24:2<165::AID-PROT4>3.0.CO;2-I

    Article  CAS  Google Scholar 

  43. UniProt help: Signal peptide. http://www.uniprot.org/help/signal. Accessed 30 May 2016

  44. Signal peptide—Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Signal_peptide. Accessed 30 May 2016

  45. SO_0000418 < Ontology Lookup Service < EMBL-EBI. http://www.ebi.ac.uk/ols/ontologies/so/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FSO_0000418. Accessed 30 May 2016

  46. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. doi:10.1006/jmbi.2000.3903

    Article  CAS  PubMed  Google Scholar 

  47. TargetP 1.1 Server. http://www.cbs.dtu.dk/services/TargetP/. Accessed 30 May 2016

  48. von Heijne G (1989) The structure of signal peptides from bacterial lipoproteins. Protein Eng 2:531–534. doi:10.1093/protein/2.7.531

    Article  Google Scholar 

  49. Juncker AS, Willenbrock H, von Heijne G et al (2003) Prediction of lipoprotein signal peptides in gram-negative bacteria. Protein Sci 12:1652–1662. doi:10.1110/ps.0303703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. LipoP 1.0 Server. http://www.cbs.dtu.dk/services/LipoP/. Accessed 30 May 2016

  51. Cristóbal S, de Gier J-W, Nielsen H, von Heijne G (1999) Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 18:2982–2990. doi:10.1093/emboj/18.11.2982

    Article  PubMed  PubMed Central  Google Scholar 

  52. Berks BC (2015) The twin-arginine protein translocation pathway. Annu Rev Biochem 84:843–864. doi:10.1146/annurev-biochem-060614-034251

    Article  CAS  PubMed  Google Scholar 

  53. Bendtsen JD, Nielsen H, Widdick D et al (2005) Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167. doi:10.1186/1471-2105-6-167

    Article  PubMed  PubMed Central  Google Scholar 

  54. TatP 1.0 Server. http://www.cbs.dtu.dk/services/TatP/. Accessed 30 May 2016

  55. Pedersen AG, Nielsen H (1997) Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proc Int Conf Intell Syst Mol Biol 5:226–233

    Google Scholar 

  56. NetStart 1.0 Prediction Server. http://www.cbs.dtu.dk/services/NetStart/. Accessed 30 May 2016

  57. Thompson BG, Murray RGE (1981) Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark. Can J Microbiol 27:729–734. doi:10.1139/m81-111

    Article  CAS  PubMed  Google Scholar 

  58. Bird P, Gething MJ, Sambrook J (1987) Translocation in yeast and mammalian cells: not all signal sequences are functionally equivalent. J Cell Biol 105:2905–2914. doi:10.1083/jcb.105.6.2905

    Article  CAS  PubMed  Google Scholar 

  59. Payne SH, Bonissone S, Wu S et al (2012) Unexpected diversity of signal peptides in prokaryotes. mBio 3:e00339–e00312. doi:10.1128/mBio.00339-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. GFF2—GMOD. http://gmod.org/wiki/GFF2. Accessed 30 May 2016

Download references

Acknowledgments

Heartfelt thanks go to all coauthors on the SignalP papers though the years: Søren Brunak, Jacob Engelbrecht, Gunnar von Heijne, Anders Krogh, Jannick Dyrløv Bendtsen, and Thomas Nordahl Petersen. In addition, I wish to thank the people who helped in implementing the website and still work on keeping it up and running: Kristoffer Rapacki, Hans Henrik Stærfeldt, and Peter Wad Sackett.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Nielsen, H. (2017). Predicting Secretory Proteins with SignalP. In: Kihara, D. (eds) Protein Function Prediction. Methods in Molecular Biology, vol 1611. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7015-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7015-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7013-1

  • Online ISBN: 978-1-4939-7015-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics