Skip to main content

Real-Time Cell Cycle Imaging in a 3D Cell Culture Model of Melanoma

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1612))

Abstract

Aberrant cell cycle progression is a hallmark of solid tumors; therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. Here, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.

*These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandner JM, Haass NK (2013) Melanoma's connections to the tumour microenvironment. Pathology 45(5):443–452. doi:10.1097/PAT.0b013e328363b3bd

    Article  CAS  PubMed  Google Scholar 

  2. Villanueva J, Herlyn M (2008) Melanoma and the tumor microenvironment. Curr Oncol Rep 10(5):439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beaumont KA, Mohana-Kumaran N, Haass NK (2014) Modeling melanoma in vitro and in vivo. Healthcare 2(1):27–46. doi:10.3390/healthcare2010027

    Article  Google Scholar 

  4. Santiago-Walker A, Li L, Haass NK et al (2009) Melanocytes: from morphology to application. Skin Pharmacol Physiol 22(2):114–121. doi:10.1159/000178870

    Article  CAS  PubMed  Google Scholar 

  5. Smalley KS, Lioni M, Noma K et al (2008) In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert Opin Drug Discovery 3(1):1–10. doi:10.1517/17460441.3.1.1

    Article  CAS  Google Scholar 

  6. Wroblewski D, Mijatov B, Mohana-Kumaran N et al (2013) The BH3-mimetic ABT-737 sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors but does not reverse acquired resistance. Carcinogenesis 34(2):237–247. doi:10.1093/carcin/bgs330

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. doi:10.1016/S0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  9. Sakaue-Sawano A, Kurokawa H, Morimura T et al (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498. doi:10.1016/j.cell.2007.12.033

    Article  CAS  PubMed  Google Scholar 

  10. Haass NK, Beaumont KA, Hill DS et al (2014) Real-time cell cycle imaging during melanoma growth, invasion, and drug response. Pigment Cell Melanoma Res 27(5):764–776. doi:10.1111/pcmr.12274

    Article  CAS  PubMed  Google Scholar 

  11. Beaumont KA, Hill DS, Daignault SM et al (2016) Cell cycle phase-specific drug resistance as an escape mechanism of melanoma cells. J Invest Dermatol. doi:10.1016/j.jid.2016.02.805

    PubMed  Google Scholar 

  12. Ravindran Menon D, Das S, Krepler C et al (2015) A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 34(34):4448–4459. doi:10.1038/onc.2014.372

    Article  CAS  PubMed  Google Scholar 

  13. Haass NK (2015) Dynamic tumor heterogeneity in melanoma therapy: how do we address this in a novel model system? Melanoma Manag 2(2):93–95. doi:10.2217/mmt.15.1

    Article  Google Scholar 

  14. Beaumont KA, Anfosso A, Ahmed F et al (2015) Imaging- and flow cytometry-based analysis of cell position and the cell cycle in 3D melanoma spheroids. J Vis Exp 106:e53486. doi:10.3791/53486

    Google Scholar 

  15. Smalley KS, Brafford P, Haass NK et al (2005) Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. Am J Pathol 166(5):1541–1554. doi:10.1016/S0002-9440(10)62370-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25(11):1463–1465. doi:10.1093/bioinformatics/btp184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flach EH, Rebecca VW, Herlyn M et al (2011) Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol Pharm 8(6):2039–2049. doi:10.1021/mp200421k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haass NK, Sproesser K, Nguyen TK et al (2008) The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 14(1):230–239. doi:10.1158/1078-0432.CCR-07-1440

    Article  CAS  PubMed  Google Scholar 

  19. Velazquez OC, Snyder R, Liu ZJ et al (2002) Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like 3-dimensional networks. FASEB J 16(10):1316–1318. doi:10.1096/fj.01-1011fje

    CAS  PubMed  Google Scholar 

  20. Kirkpatrick ND, Hoying JB, Botting SK et al (2006) In vitro model for endogenous optical signatures of collagen. J Biomed Opt 11(5):054021. doi:10.1117/1.2360516

    Article  PubMed  Google Scholar 

  21. Tong PL, Qin J, Cooper CL et al (2013) A quantitative approach to histopathological dissection of elastin-related disorders using multiphoton microscopy. Br J Dermatol 169(4):869–879. doi:10.1111/bjd.12430

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Meenhard Herlyn, The Wistar Institute, Philadelphia, PA; Prof. Keiran Smalley, Moffitt Cancer Center, Tampa, FL; Prof. Wolfgang Weninger & Dr. Ben Roediger, Centenary Institute, Sydney, NSW; Dr. Crystal Tonnessen, UQ Diamantina Institute, Brisbane, QLD, and the imaging facilities of the Centenary and UQ Diamantina Institutes for their contribution to optimizing this protocol over the years. We thank Prof. Atsushi Miyawaki, RIKEN, Wako-city, Japan, for providing the FUCCI constructs. N.K.H. is a Cameron fellow of the Melanoma and Skin Cancer Research Institute, Australia. K.A.B. is a fellow of Cancer Institute New South Wales (13/ECF/1-39). The work leading to this protocol was supported by project grants RG 09-08 and RG 13-06 (Cancer Council New South Wales), 570778 and 1051996 (Priority-driven collaborative cancer research scheme/Cancer Australia/Cure Cancer Australia Foundation), 08/RFG/1-27 (Cancer Institute New South Wales), APP1003637 and APP1084893 (National Health and Medical Research Council).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas K. Haass M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Spoerri, L., Beaumont, K.A., Anfosso, A., Haass, N.K. (2017). Real-Time Cell Cycle Imaging in a 3D Cell Culture Model of Melanoma. In: Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 1612. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7021-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7021-6_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7019-3

  • Online ISBN: 978-1-4939-7021-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics