Skip to main content

Growing and Genetically Manipulating Human Umbilical Cord Blood-Derived Erythroid Progenitor (HUDEP) Cell Lines

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1698))

Abstract

The recently established human umbilical cord blood-derived erythroid progenitor (HUDEP) cell lines have equipped red blood cell researchers with valuable in vitro models of erythroid development. Of the three established HUDEP cell lines, HUDEP-2 cells express predominantly adult β-globin and most closely resemble adult erythroid cells. This chapter describes culture protocols for the maintenance and erythroid differentiation of HUDEP-2 cells. Methods to genetically manipulate HUDEP-2 cells using a CRISPR/Cas9 nuclease-based approach are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tsiftsoglou AS, Vizirianakis IS, Strouboulis J (2009) Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 61(8):800–830. doi:10.1002/iub.226. Review. PubMed PMID: 19621348

    Article  CAS  PubMed  Google Scholar 

  2. Olivier E, Qiu C, Bouhassira EE (2012) Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood. Stem Cells Transl Med 1(8):604–614. doi:10.5966/sctm.2012-0059. PubMed PMID: 23197866; PubMed Central PMCID: PMC3659727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lapillonne H, Kobari L, Mazurier C, Tropel P, Giarratana MC, Zanella-Cleon I, Kiger L, Wattenhofer-Donzé M, Puccio H, Hebert N, Francina A, Andreu G, Viville S, Douay L (2010) Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica 95(10):1651–1659. doi:10.3324/haematol.2010.023556. PubMed PMID: 20494935; PubMed Central PMCID: PMC2948089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Migliaccio G, Di Pietro R, di Giacomo V, Di Baldassarre A, Migliaccio AR, Maccioni L, Galanello R, Papayannopoulou T (2002) In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients. Blood Cells Mol Dis 28(2):169–180. PubMed PMID: 12064913

    Article  PubMed  Google Scholar 

  5. Giarratana MC, Rouard H, Dumont A, Kiger L, Safeukui I, Le Pennec PY, François S, Trugnan G, Peyrard T, Marie T, Jolly S, Hebert N, Mazurier C, Mario N, Harmand L, Lapillonne H, Devaux JY, Douay L (2011) Proof of principle for transfusion of in vitro-generated red blood cells. Blood 118(19):5071–5079. doi:10.1182/blood-2011-06-362038. PubMed PMID: 21885599; PubMed Central PMCID: PMC3217398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, Tani K, Nakamura Y (2013) Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One 8(3):e59890. doi:10.1371/journal.pone.0059890. PubMed PMID: 23533656; PubMed Central PMCID: PMC3606290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Münger K, Howley PM (2002) Human papillomavirus immortalization and transformation functions. Virus Res 89(2):213–228. Review. PubMed PMID: 12445661

    Article  PubMed  Google Scholar 

  8. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527(7577):192–197. doi:10.1038/nature15521. PubMed PMID: 26375006; PubMed Central PMCID: PMC4644101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Masuda T, Wang X, Maeda M, Canver MC, Sher F, Funnell AP, Fisher C, Suciu M, Martyn GE, Norton LJ, Zhu C, Kurita R, Nakamura Y, Xu J, Higgs DR, Crossley M, Bauer DE, Orkin SH, Kharchenko PV, Maeda T (2016) Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351(6270):285–289. doi:10.1126/science.aad3312. PubMed PMID: 26816381; PubMedCentral PMCID: PMC4778394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Traxler EA, Yao Y, Wang YD, Woodard KJ, Kurita R, Nakamura Y, Hughes JR, Hardison RC, Blobel GA, Li C, Weiss MJ (2016) A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med 22(9):987–990. doi:10.1038/nm.4170. PubMed PMID: 27525524

    Article  CAS  PubMed  Google Scholar 

  11. Addgene. https://www.addgene.org/crispr/cut/. Accessed Nov 2016

  12. Addgene. https://www.addgene.org/viral-vectors/lentivirus/. Accessed Nov 2016

  13. Dzierzak E, Philipsen S (2013) Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med 3(4):a011601. doi:10.1101/cshperspect.a011601. Review. PubMed PMID: 23545573; PubMed Central PMCID: PMC3684002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Karasawa S, Araki T, Nagai T, Mizuno H, Miyawaki A (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381(Pt 1):307–312. PubMed PMID: 15065984; PubMed Central PMCID: PMC1133789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

D.E.B. is supported by NIDDK (K08DK093705, R03DK109232), Burroughs Wellcome Fund, American Society of Hematology, and the Doris Duke Charitable, Charles H. Hood, and Cooley’s Anemia Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vinjamur, D.S., Bauer, D.E. (2018). Growing and Genetically Manipulating Human Umbilical Cord Blood-Derived Erythroid Progenitor (HUDEP) Cell Lines. In: Lloyd, J. (eds) Erythropoiesis. Methods in Molecular Biology, vol 1698. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7428-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7428-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7427-6

  • Online ISBN: 978-1-4939-7428-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics