Skip to main content

SignaLink: Multilayered Regulatory Networks

  • Protocol
  • First Online:
Computational Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1819))

Abstract

Biological networks are graphs used to represent the inner workings of a biological system. Networks describe the relationships of the elements of biological systems using edges and nodes. However, the resulting representation of the system can sometimes be too simplistic to usefully model reality. By combining several different interaction types within one larger multilayered biological network, tools such as SignaLink provide a more nuanced view than those relying on single-layer networks (where edges only describe one kind of interaction). Multilayered networks display connections between multiple networks (i.e., protein–protein interactions and their transcriptional and posttranscriptional regulators), each one of them describing a specific set of connections. Multilayered networks also allow us to depict cross talk between cellular systems, which is a more realistic way of describing molecular interactions. They can be used to collate networks from different sources into one multilayered structure, which makes them useful as an analytic tool as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4:39–49. https://doi.org/10.1038/nrg977

    Article  CAS  PubMed  Google Scholar 

  2. Csermely P, Korcsmáros T, Kiss HJM et al (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408. https://doi.org/10.1016/j.pharmthera.2013.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Valdespino-Gómez VM, Valdespino-Castillo PM, Valdespino-Castillo VE (2015) Cell signalling pathways interaction in cellular proliferation: potential target for therapeutic interventionism. Cir Cir 83:165–174. https://doi.org/10.1016/j.circen.2015.08.015

    Article  PubMed  Google Scholar 

  4. Nayak L, Bhattacharyya NP, De RK (2016) Wnt signal transduction pathways: modules, development and evolution. BMC Syst Biol 10(Suppl 2):44. https://doi.org/10.1186/s12918-016-0299-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xia Y, Yu H, Jansen R et al (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73:1051–1087. https://doi.org/10.1146/annurev.biochem.73.011303.073950

    Article  CAS  PubMed  Google Scholar 

  6. Türei D, Korcsmáros T, Saez-Rodriguez J (2016) OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat Methods 13:966–967. https://doi.org/10.1038/nmeth.4077

    Article  CAS  PubMed  Google Scholar 

  7. Perfetto L, Briganti L, Calderone A et al (2016) SIGNOR: a database of causal relationships between biological entities. Nucleic Acids Res 44:D548–D554. https://doi.org/10.1093/nar/gkv1048

    Article  CAS  PubMed  Google Scholar 

  8. Fabregat A, Sidiropoulos K, Garapati P et al (2016) The Reactome pathway knowledgebase. Nucleic Acids Res 44:D481–D487. https://doi.org/10.1093/nar/gkv1351

    Article  CAS  PubMed  Google Scholar 

  9. Fazekas D, Koltai M, Türei D et al (2013) SignaLink 2–a signaling pathway resource with multi-layered regulatory networks. BMC Syst Biol 7:7. https://doi.org/10.1186/1752-0509-7-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Korcsmáros T, Farkas IJ, Szalay MS et al (2010) Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics 26:2042–2050. https://doi.org/10.1093/bioinformatics/btq310

    Article  CAS  PubMed  Google Scholar 

  11. De Domenico M, Nicosia V, Arenas A, Latora V (2015) Structural reducibility of multilayer networks. Nat Commun 6:6864. https://doi.org/10.1038/ncomms7864

    Article  CAS  PubMed  Google Scholar 

  12. Kivelä M, Arenas A, Barthelemy M et al (2014) Multilayer networks. J Complex Netw 2:203–271. https://doi.org/10.1093/comnet/cnu016

    Article  Google Scholar 

  13. Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823. https://doi.org/10.1093/nar/gks1158

    Article  CAS  PubMed  Google Scholar 

  14. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  15. Santra T, Kolch W, Kholodenko BN (2014) Navigating the multilayered organization of eukaryotic signaling: a new trend in data integration. PLoS Comput Biol 10:e1003385. https://doi.org/10.1371/journal.pcbi.1003385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Molloy JC (2011) The open knowledge foundation: open data means better science. PLoS Biol 9:e1001195. https://doi.org/10.1371/journal.pbio.1001195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vizcaíno JA, Deutsch EW, Wang R et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226. https://doi.org/10.1038/nbt.2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Omenn GS, States DJ, Adamski M et al (2005) Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5:3226–3245. https://doi.org/10.1002/pmic.200500358

    Article  CAS  PubMed  Google Scholar 

  19. Woelfle M, Olliaro P, Todd MH (2011) Open science is a research accelerator. Nat Chem 3:745–748. https://doi.org/10.1038/nchem.1149

    Article  CAS  PubMed  Google Scholar 

  20. Chowdhury S, Sarkar RR (2015) Comparison of human cell signaling pathway databases–evolution, drawbacks and challenges. Database (Oxford) 2015:bau126. https://doi.org/10.1093/database/bau126

    Article  CAS  Google Scholar 

  21. Cusick ME, Yu H, Smolyar A et al (2009) Literature-curated protein interaction datasets. Nat Methods 6:39–46. https://doi.org/10.1038/nmeth.1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pico AR, Kelder T, van Iersel MP et al (2008) WikiPathways: pathway editing for the people. PLoS Biol 6:e184. https://doi.org/10.1371/journal.pbio.0060184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477. https://doi.org/10.1093/nar/gkt1102

    Article  CAS  PubMed  Google Scholar 

  24. Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42:D358–D363. https://doi.org/10.1093/nar/gkt1115

    Article  CAS  PubMed  Google Scholar 

  25. Stark C, Breitkreutz B-J, Chatr-Aryamontri A et al (2011) The BioGRID interaction database: 2011 update. Nucleic Acids Res 39:D698–D704. https://doi.org/10.1093/nar/gkq1116

    Article  CAS  PubMed  Google Scholar 

  26. Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  PubMed  Google Scholar 

  27. Demir E, Cary MP, Paley S et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942. https://doi.org/10.1038/nbt.1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531. https://doi.org/10.1093/bioinformatics/btg015

    Article  CAS  PubMed  Google Scholar 

  29. Kerrien S, Orchard S, Montecchi-Palazzi L et al (2007) Broadening the horizon–level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol 5:44. https://doi.org/10.1186/1741-7007-5-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Helmy M, Crits-Christoph A, Bader GD (2016) Ten simple rules for developing public biological databases. PLoS Comput Biol 12:e1005128. https://doi.org/10.1371/journal.pcbi.1005128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harris TW, Antoshechkin I, Bieri T et al (2010) WormBase: a comprehensive resource for nematode research. Nucleic Acids Res 38:D463–D467. https://doi.org/10.1093/nar/gkp952

    Article  CAS  PubMed  Google Scholar 

  32. Tweedie S, Ashburner M, Falls K et al (2009) FlyBase: enhancing drosophila gene ontology annotations. Nucleic Acids Res 37:D555–D559. https://doi.org/10.1093/nar/gkn788

    Article  CAS  PubMed  Google Scholar 

  33. Chen H, Sharp BM (2004) Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics 5:147. https://doi.org/10.1186/1471-2105-5-147

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoffmann R, Valencia A (2005) Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics 21(Suppl 2):ii252–ii258. https://doi.org/10.1093/bioinformatics/bti1142

    Article  CAS  PubMed  Google Scholar 

  35. Hermjakob H, Montecchi-Palazzi L, Bader G et al (2004) The HUPO PSI’s molecular interaction format–a community standard for the representation of protein interaction data. Nat Biotechnol 22:177–183. https://doi.org/10.1038/nbt926

    Article  CAS  PubMed  Google Scholar 

  36. Ling F, Kang B, Sun X-H (2014) Id proteins: small molecules, mighty regulators. Curr Top Dev Biol 110:189–216. https://doi.org/10.1016/B978-0-12-405943-6.00005-1

    Article  CAS  PubMed  Google Scholar 

  37. Jamil HM (2015) Improving integration effectiveness of ID mapping based biological record linkage. IEEE/ACM Trans Comput Biol Bioinform 12:473–486. https://doi.org/10.1109/TCBB.2014.2355213

    Article  CAS  PubMed  Google Scholar 

  38. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  39. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  40. Stark C, Breitkreutz B-J, Reguly T et al (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539. https://doi.org/10.1093/nar/gkj109

    Article  CAS  PubMed  Google Scholar 

  41. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuperstein I, Bonnet E, Nguyen HA et al (2015) Atlas of cancer signalling network: a systems biology resource for integrative analysis of cancer data with Google maps. Oncogene 4:e160. https://doi.org/10.1038/oncsis.2015.19

    Article  CAS  Google Scholar 

  43. Calzone L, Gelay A, Zinovyev A et al (2008) A comprehensive modular map of molecular interactions in RB/E2F pathway. Mol Syst Biol 4:173. https://doi.org/10.1038/msb.2008.7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mizuno S, Iijima R, Ogishima S et al (2012) AlzPathway: a comprehensive map of signaling pathways of Alzheimer’s disease. BMC Syst Biol 6:52. https://doi.org/10.1186/1752-0509-6-52

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ogishima S, Mizuno S, Kikuchi M et al (2016) Alzpathway, an updated map of curated signaling pathways: towards deciphering alzheimer’s disease pathogenesis. Methods Mol Biol 1303:423–432. https://doi.org/10.1007/978-1-4939-2627-5_25

    Article  PubMed  Google Scholar 

  46. Türei D, Földvári-Nagy L, Fazekas D et al (2015) Autophagy regulatory network–a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy. Autophagy 11:155–165. https://doi.org/10.4161/15548627.2014.994346

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nishimura D (2001) BioCarta. Biotech Software Internet Report 2:117–120. https://doi.org/10.1089/152791601750294344

    Article  Google Scholar 

  48. Breitkreutz B-J, Stark C, Reguly T et al (2008) The BioGRID interaction database: 2008 update. Nucleic Acids Res 36:D637–D640. https://doi.org/10.1093/nar/gkm1001

    Article  CAS  PubMed  Google Scholar 

  49. Kamburov A, Wierling C, Lehrach H, Herwig R (2009) ConsensusPathDB–a database for integrating human functional interaction networks. Nucleic Acids Res 37:D623–D628. https://doi.org/10.1093/nar/gkn698

    Article  CAS  PubMed  Google Scholar 

  50. Kamburov A, Pentchev K, Galicka H et al (2011) ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res 39:D712–D717. https://doi.org/10.1093/nar/gkq1156

    Article  CAS  PubMed  Google Scholar 

  51. Lu C-T, Huang K-Y, Su M-G et al (2013) DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res 41:D295–D305. https://doi.org/10.1093/nar/gks1229

    Article  CAS  PubMed  Google Scholar 

  52. Lee T-Y, Huang H-D, Hung J-H et al (2006) dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res 34:D622–D627. https://doi.org/10.1093/nar/gkj083

    Article  CAS  PubMed  Google Scholar 

  53. Kwon D, Yoon JH, Shin S-Y et al (2012) A comprehensive manually curated protein-protein interaction database for the death domain superfamily. Nucleic Acids Res 40:D331–D336. https://doi.org/10.1093/nar/gkr1149

    Article  CAS  PubMed  Google Scholar 

  54. Duan G, Li X, Köhn M (2015) The human DEPhOsphorylation database DEPOD: a 2015 update. Nucleic Acids Res 43:D531–D535. https://doi.org/10.1093/nar/gku1009

    Article  CAS  PubMed  Google Scholar 

  55. Xenarios I, Rice DW, Salwinski L et al (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28:289–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xenarios I, Salwínski L, Duan XJ et al (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30: 303–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peri S, Navarro JD, Amanchy R et al (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371. https://doi.org/10.1101/gr.1680803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human protein reference database–2009 update. Nucleic Acids Res 37:D767–D772. https://doi.org/10.1093/nar/gkn892

    Article  CAS  PubMed  Google Scholar 

  59. Gao Y, Qi G, Guo L, Sun Y (2016) Bioinformatics analyses of differentially expressed genes associated with acute myocardial infarction. Cardiovasc Ther 34:67–75. https://doi.org/10.1111/1755-5922.12171

    Article  CAS  PubMed  Google Scholar 

  60. Liberti S, Sacco F, Calderone A et al (2013) HuPho: the human phosphatase portal. FEBS J 280:379–387. https://doi.org/10.1111/j.1742-4658.2012.08712.x

    Article  CAS  PubMed  Google Scholar 

  61. Breuer K, Foroushani AK, Laird MR et al (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res 41:D1228–D1233. https://doi.org/10.1093/nar/gks1147

    Article  CAS  PubMed  Google Scholar 

  62. Lynn DJ, Winsor GL, Chan C et al (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 4:218. https://doi.org/10.1038/msb.2008.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kerrien S, Alam-Faruque Y, Aranda B et al (2007) IntAct–open source resource for molecular interaction data. Nucleic Acids Res 35:D561–D565. https://doi.org/10.1093/nar/gkl958

    Article  CAS  PubMed  Google Scholar 

  64. Ogata H, Goto S, Sato K et al (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Launay G, Salza R, Multedo D et al (2015) MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities. Nucleic Acids Res 43:D321–D327. https://doi.org/10.1093/nar/gku1091

    Article  CAS  PubMed  Google Scholar 

  66. Chatr-aryamontri A, Ceol A, Palazzi LM et al (2007) MINT: the molecular INTeraction database. Nucleic Acids Res 35:D572–D574. https://doi.org/10.1093/nar/gkl950

    Article  CAS  PubMed  Google Scholar 

  67. Pagel P, Kovac S, Oesterheld M et al (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21:832–834. https://doi.org/10.1093/bioinformatics/bti115

    Article  CAS  PubMed  Google Scholar 

  68. Blohm P, Frishman G, Smialowski P et al (2014) Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis. Nucleic Acids Res 42:D396–D400. https://doi.org/10.1093/nar/gkt1079

    Article  CAS  PubMed  Google Scholar 

  69. Kandasamy K, Mohan SS, Raju R et al (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:R3. https://doi.org/10.1186/gb-2010-11-1-r3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cerami EG, Gross BE, Demir E et al (2011) Pathway commons, a web resource for biological pathway data. Nucleic Acids Res 39:D685–D690. https://doi.org/10.1093/nar/gkq1039

    Article  CAS  PubMed  Google Scholar 

  71. Diella F, Cameron S, Gemünd C et al (2004) Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics 5:79. https://doi.org/10.1186/1471-2105-5-79

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dinkel H, Chica C, Via A et al (2011) Phospho.ELM: a database of phosphorylation sites–update 2011. Nucleic Acids Res 39:D261–D267. https://doi.org/10.1093/nar/gkq1104

    Article  CAS  PubMed  Google Scholar 

  73. Hornbeck PV, Chabra I, Kornhauser JM et al (2004) PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4:1551–1561. https://doi.org/10.1002/pmic.200300772

    Article  CAS  PubMed  Google Scholar 

  74. Hornbeck PV, Kornhauser JM, Tkachev S et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270. https://doi.org/10.1093/nar/gkr1122

    Article  CAS  PubMed  Google Scholar 

  75. Matthews L, Gopinath G, Gillespie M et al (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37:D619–D622. https://doi.org/10.1093/nar/gkn863

    Article  CAS  PubMed  Google Scholar 

  76. Haw R, Hermjakob H, D’Eustachio P, Stein L (2011) Reactome pathway analysis to enrich biological discovery in proteomics data sets. Proteomics 11:3598–3613. https://doi.org/10.1002/pmic.201100066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Elkon R, Vesterman R, Amit N et al (2008) SPIKE–a database, visualization and analysis tool of cellular signaling pathways. BMC Bioinformatics 9:110. https://doi.org/10.1186/1471-2105-9-110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Paz A, Brownstein Z, Ber Y et al (2011) SPIKE: a database of highly curated human signaling pathways. Nucleic Acids Res 39:D793–D799. https://doi.org/10.1093/nar/gkq1167

    Article  CAS  PubMed  Google Scholar 

  79. Chun JN, Lim JM, Kang Y et al (2014) A network perspective on unraveling the role of TRP channels in biology and disease. Pflugers Arch 466:173–182. https://doi.org/10.1007/s00424-013-1292-2

    Article  CAS  PubMed  Google Scholar 

  80. Kelder T, van Iersel MP, Hanspers K et al (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40:D1301–D1307. https://doi.org/10.1093/nar/gkr1074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the past and present developers and coauthors of SignaLink, and also to the members of the Netbiol, LINK, and Korcsmaros groups. This work was supported by a fellowship to TK in computational biology at the Earlham Institute (Norwich, UK) in partnership with the Quadram Institute (Norwich, UK), and strategically supported by the Biotechnological and Biosciences Research Council, UK (BB/J004529/1 and BB/P016774/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Korcsmáros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Csabai, L., Ölbei, M., Budd, A., Korcsmáros, T., Fazekas, D. (2018). SignaLink: Multilayered Regulatory Networks. In: von Stechow, L., Santos Delgado, A. (eds) Computational Cell Biology. Methods in Molecular Biology, vol 1819. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8618-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8618-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8617-0

  • Online ISBN: 978-1-4939-8618-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics