Skip to main content

RNA Interference Screening for Genes Regulating Drosophila Muscle Morphogenesis

  • Protocol
  • First Online:
Myogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1889))

Abstract

RNA interference (RNAi) is the method of choice to systematically test for gene function in an intact organism. The model organism Drosophila has the advantage that RNAi is cell autonomous, meaning it does not spread from one cell to the next. Hence, RNAi can be performed in a tissue-specific manner by expressing short or long inverted repeat constructs (hairpins) designed to target mRNAs from one specific target gene. This achieves tissue-specific knock-down of a target gene of choice. Here, we detail the methodology to test gene function in Drosophila muscle tissue by expressing hairpins in a muscle-specific manner using the GAL4-UAS system. We further discuss the systematic RNAi resource collections available which also permit large scale screens in a muscle-specific manner. The full power of such screens is revealed by combination of high-throughput assays followed by detailed morphological assays. Together, this chapter should be a practical guide to enable the reader to either test a few candidate genes, or large gene sets for particular functions in Drosophila muscle tissue and provide first insights into the biological process the gene might be important for in muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohr SE, Perrimon N (2011) RNAi screening: new approaches, understandings, and organisms. WIREs RNA 3:145–158. https://doi.org/10.1002/wrna.110

    Article  CAS  PubMed  Google Scholar 

  2. Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9:554–566. https://doi.org/10.1038/nrg2364

    Article  CAS  PubMed  Google Scholar 

  3. Kaya-Copur A, Schnorrer F (2016) A guide to genome-wide in vivo RNAi applications in Drosophila. Methods Mol Biol 1478:117–143. https://doi.org/10.1007/978-1-4939-6371-3_6

    Article  CAS  PubMed  Google Scholar 

  4. Roignant J-Y, Carré C, Mugat B, Szymczak D, Lepesant J-A, Antoniewski C (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9:299–308

    Article  CAS  Google Scholar 

  5. Dietzl G, Chen D, Schnorrer F, Su K-C, Barinova Y, Fellner M et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156. https://doi.org/10.1038/nature05954

    Article  CAS  PubMed  Google Scholar 

  6. Ni J-Q, Zhou R, Czech B, Liu L-P, Holderbaum L, Yang-Zhou D et al (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8:405–407. https://doi.org/10.1038/nmeth.1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mohr SE, Smith JA, Shamu CE, Neumüller RA, Perrimon N (2014) RNAi screening comes of age:improved techniques andcomplementary approaches. Nat Rev Mol Cell Biol 15:591–600. https://doi.org/10.1038/nrm3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768. https://doi.org/10.1126/science.1089035

    Article  CAS  PubMed  Google Scholar 

  9. Pospisilik JA, Schramek D, Schnidar H, Cronin SJF, Nehme NT, Zhang X et al (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140:148–160. https://doi.org/10.1016/j.cell.2009.12.027

    Article  CAS  PubMed  Google Scholar 

  10. Schnorrer F, Schönbauer C, Langer CCH, Dietzl G, Novatchkova M, Schernhuber K et al (2010) Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature 464:287–291. https://doi.org/10.1038/nature08799

    Article  CAS  PubMed  Google Scholar 

  11. Handler D, Meixner K, Pizka M, Lauss K, Schmied C, Gruber FS et al (2013) The genetic makeup of the Drosophila piRNA pathway. Mol Cell 50:762–777. https://doi.org/10.1016/j.molcel.2013.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reim G, Hruzova M, Goetze S, Basler K (2014) Protection of armadillo/β-catenin by armless, a novel positive regulator of wingless signaling. PLoS Biol 12:e1001988. https://doi.org/10.1371/journal.pbio.1001988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neumüller RA, Richter C, Fischer A, Novatchkova M, Neumüller KG, Knoblich JA (2011) Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 8:580–593. https://doi.org/10.1016/j.stem.2011.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roy S, VijayRaghavan K (1998) Patterning muscles using organizers: larval muscle templates and adult myoblasts actively interact to pattern the dorsal longitudinal flight muscles of Drosophila. J Cell Biol 141:1135

    Article  CAS  Google Scholar 

  15. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  Google Scholar 

  16. Bryantsev AL, Duong S, Brunetti TM, Chechenova MB, Lovato TL, Nelson C et al (2012) Extradenticle and homothorax control adult muscle fiber identity in Drosophila. Dev Cell 23:664–673. https://doi.org/10.1016/j.devcel.2012.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Menon SD, Chia W (2001) Drosophila rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded. Dev Cell 1:691–703

    Article  CAS  Google Scholar 

  18. Spletter ML, Barz C, Yeroslaviz A, Zhang X, Lemke SB, Bonnard A et al (2018) A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle. elife 7:1361. https://doi.org/10.7554/eLife.34058

    Article  Google Scholar 

  19. Ranganayakulu G, Zhao B, Dokidis A, Molkentin JD, Olson EN, Schulz RA (1995) A series of mutations in the DMEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila. Dev Biol 171:169–181. https://doi.org/10.1006/dbio.1995.1269

    Article  CAS  PubMed  Google Scholar 

  20. Klein P, Müller-Rischart AK, Motori E, Schönbauer C, Schnorrer F, Winklhofer KF et al (2014) Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J 33:341–355. https://doi.org/10.1002/embj.201284290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schönbauer C, Distler J, Jährling N, Radolf M, Dodt H-U, Frasch M et al (2011) Spalt mediates an evolutionarily conserved switch to fibrillar muscle fate in insects. Nature 479:406–409. https://doi.org/10.1038/nature10559

    Article  CAS  PubMed  Google Scholar 

  22. Kocherlakota KS, Wu J-M, McDermott J, Abmayr SM (2008) Analysis of the cell adhesion molecule sticks-andstones reveals multiple redundant functional domains, protein-interaction motifs and phosphorylated tyrosines that direct myoblast fusion in Drosophila melanogaster. Genetics 178:1371–1383. https://doi.org/10.1534/genetics.107.083808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Usui K, Pistillo D, Simpson P (2004) Mutual exclusion of sensory bristles and tendons on the notum of dipteran flies. Curr Biol 14:1047–1055. https://doi.org/10.1016/j.cub.2004.06.026

    Article  CAS  PubMed  Google Scholar 

  24. Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A 98:15050–15055. https://doi.org/10.1073/pnas.261408198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orfanos Z, Sparrow JC (2013) Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice. J Cell Sci 126:139–148. https://doi.org/10.1242/jcs.110361

    Article  CAS  PubMed  Google Scholar 

  26. Orfanos Z, Leonard K, Elliott C, Katzemich A, Bullard B, Sparrow J (2015) Sallimus and the dynamics of sarcomere assembly in drosophila flight muscles. J Mol Biol 427:2151–2158. https://doi.org/10.1016/j.jmb.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  27. Katzemich A, Liao KA, Czerniecki S, Schöck F (2013) Alp/enigma family proteins cooperate in Z-disc formation and myofibril assembly. PLoS Genet 9:e1003342. https://doi.org/10.1371/journal.pgen.1003342.s007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klapholz B, Herbert SL, Wellmann J, Johnson R, Parsons M, Brown NH (2015) Alternative mechanisms for talin to mediate integrin function. Curr Biol 25:847–857. https://doi.org/10.1016/j.cub.2015.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D et al (2016) A genome-wide resource for the analysis of protein localisation in Drosophila. elife 5:e12068. https://doi.org/10.7554/eLife.12068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richardson B, Beckett K, Nowak S, Baylies M (2007) SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development 134:4357

    Article  CAS  Google Scholar 

  31. Chen E, Olson E (2001) Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev Cell 1:705–715

    Article  CAS  Google Scholar 

  32. Millard TH, Martin P (2008) Dynamic analysis of filopodial interactions during the zippering phase of Drosophila dorsal closure. Development 135:621–626. https://doi.org/10.1242/dev.014001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dutta D, Bloor JW, Ruiz-Gómez M, VijayRaghavan K, Kiehart DP (2002) Real-time imaging of morphogenetic movements in Drosophila using Gal4-UAS-driven expression of GFP fused to the actin-binding domain of moesin. Genesis 34:146–151. https://doi.org/10.1002/gene.10113

    Article  CAS  PubMed  Google Scholar 

  34. Hatan M, Shinder V, Israeli D, Schnorrer F, Volk T (2011) The Drosophila blood brain barrier is maintained by GPCR-dependent dynamic actin structures. J Cell Biol 192:307–319. https://doi.org/10.1083/jcb.201007095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  CAS  Google Scholar 

  36. Spletter ML, Barz C, Yeroslaviz A, Schönbauer C, Ferreira IRS, Sarov M et al (2015) The RNA-binding protein Arrest (Bruno) regulates alternative splicing to enable myofibril maturation in Drosophila flight muscle. EMBO Rep 16:178–191. https://doi.org/10.15252/embr.201439791

    Article  CAS  PubMed  Google Scholar 

  37. Lemke SB, Schnorrer F (2018) In Vivo imaging of muscle-tendon morphogenesis in Drosophila pupae. J Vis Exp:e57312–e57312. https://doi.org/10.3791/57312

  38. Lakey A, Labeit S, Gautel M, Ferguson C, Barlow DP, Leonard K et al (1993) Kettin, a large modular protein in the Z-disc of insect muscles. EMBO J 12:2863–2871

    Article  CAS  Google Scholar 

  39. Saide J, Chin-Bow S, Hogan-Sheldon J, Busquets-Turner L, Vigoreaux J, Valgeirsdottir K et al (1989) Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster. J Cell Biol 109:2157

    Article  CAS  Google Scholar 

  40. Qiu F, Brendel S, Cunha P, Astola N, Song B, Furlong E et al (2005) Myofilin, a protein in the thick filaments of insect muscle. J Cell Sci 118:1527

    Article  CAS  Google Scholar 

  41. Bullard B, Leonard K, Larkins A, Butcher G, Karlik C, Fyrberg E (1988) Troponin of asynchronous flight muscle. J Mol Biol 204:621–637

    Article  CAS  Google Scholar 

  42. Wilcox M, Brower DL, Smith RJ (1981) A position-specific cell surface antigen in the drosophila wing imaginal disc. Cell 25:159–164

    Article  CAS  Google Scholar 

  43. Brower DL, Wilcox M, Piovant M, Smith RJ, Reger LA (1984) Related cell-surface antigens expressed with positional specificity in Drosophila imaginal discs. Proc Natl Acad Sci U S A 81:7485–7489

    Article  CAS  Google Scholar 

  44. Brown NH, Gregory SL, Rickoll WL, Fessler LI, Prout M, White RAH et al (2002) Talin is essential for integrin function in Drosophila. Dev Cell 3:569–579

    Article  CAS  Google Scholar 

  45. Razzaq A, Robinson I, McMahon H, Skepper J, Su Y, Zelhof A et al (2001) Amphiphysin is necessary for organization of the excitation–contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev 15:2967

    Article  CAS  Google Scholar 

  46. Atreya K, Fernandes J (2008) Founder cells regulate fiber number but not fiber formation during adult myogenesis in Drosophila. Dev Biol 321:123–140

    Article  CAS  Google Scholar 

  47. Schmid A, Sigrist SJ (2008) Analysis of neuromuscular junctions: histology and in vivo imaging. Methods Mol Biol 420:239–251. https://doi.org/10.1007/978-1-59745-583-1_14

    Article  CAS  PubMed  Google Scholar 

  48. Budnik V, Gorczyca M, Prokop A (2006) Selected methods for the anatomical study of Drosophila embryonic and larval neuromuscular junctions. Int Rev Neurobiol 75:323–365. https://doi.org/10.1016/S0074-7742(06)75015-2

    Article  CAS  PubMed  Google Scholar 

  49. Weitkunat M, Schnorrer F (2014) A guide to study Drosophila muscle biology. Methods 68:2–14. https://doi.org/10.1016/j.ymeth.2014.02.037

    Article  CAS  PubMed  Google Scholar 

  50. Weitkunat M, Kaya-Copur A, Grill SW, Schnorrer F (2014) Tension and force-resistant attachment are essential for myofibrillogenesis in Drosophila flight muscle. Curr Biol 24:705–716. https://doi.org/10.1016/j.cub.2014.02.032

    Article  CAS  PubMed  Google Scholar 

  51. Starz-Gaiano M, Cho NK, Forbes A, Lehmann R (2001) Spatially restricted activity of a Drosophila lipid phosphatase guides migrating germ cells. Development 128:983–991

    CAS  PubMed  Google Scholar 

  52. Langer CCH, Ejsmont RK, Schönbauer C, Schnorrer F, Tomancak P (2010) In vivo RNAi rescue in Drosophila melanogaster with genomic transgenes from Drosophila pseudoobscura. PLoS One 5:e8928. https://doi.org/10.1371/journal.pone.0008928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Schnorrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaya-Çopur, A., Schnorrer, F. (2019). RNA Interference Screening for Genes Regulating Drosophila Muscle Morphogenesis. In: Rønning, S. (eds) Myogenesis. Methods in Molecular Biology, vol 1889. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8897-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8897-6_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8896-9

  • Online ISBN: 978-1-4939-8897-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics