Skip to main content

Assessing Collagen Deposition During Aging in Mammalian Tissue and in Caenorhabditis elegans

  • Protocol
  • First Online:
Collagen

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1944))

Abstract

Proper collagen homeostasis is essential for development and aging of any multicellular organism. During aging, two extreme scenarios are commonly occurring: a local excess in collagen deposition, for instance during fibrosis, or a gradual overall reduction of collagen mass. Here, we describe a histological and a colorimetric method to assess collagen levels in mammalian tissues and in the nematode Caenorhabditis elegans. The first method is the polychrome Herovici staining to distinguish between young and mature collagen ratios. The second method is based on hydroxyproline measurements to estimate collagen protein levels. In addition, we show how to decellularize the multicellular organism C. elegans in order to harvest its cuticle, one of the two major extracellular matrices, mainly composed of collagen. These methods allow assessing collagen deposition during aging either in tissues or in whole organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  Google Scholar 

  2. Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978–a004978

    Article  Google Scholar 

  3. Sivan S-S, Wachtel E, Tsitron E et al (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283:8796–8801

    Article  CAS  Google Scholar 

  4. Heinemeier KM, Schjerling P, Heinemeier J et al (2016) Radiocarbon dating reveals minimal collagen turnover in both healthy and osteoarthritic human cartilage. Sci Transl Med 8:346ra90–346ra90

    Article  Google Scholar 

  5. Toyama BH, Hetzer MW (2013) Protein homeostasis: live long, won't prosper. Nat Rev Mol Cell Biol 14:55–61

    Article  CAS  Google Scholar 

  6. Kjaer M, Langberg H, Miller BF et al (2005) Metabolic activity and collagen turnover in human tendon in response to physical activity. J Musculoskelet Neuronal Interact 5:41–52

    CAS  PubMed  Google Scholar 

  7. Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33:7–21

    Article  CAS  Google Scholar 

  8. Fisher GJ, Quan T, Purohit T et al (2009) Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am J Pathol 174:101–114

    Article  CAS  Google Scholar 

  9. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  CAS  Google Scholar 

  10. Sell DR, Monnier VM (2012) Molecular basis of arterial stiffening: role of glycation–a mini-review. Gerontology 58:227–237

    Article  CAS  Google Scholar 

  11. Snedeker JG, Snedeker JG, Gautieri A et al (2014) The role of collagen crosslinks in ageing and diabetes–the good, the bad, and the ugly. Muscles Ligaments Tendons J 4:303–308

    Article  Google Scholar 

  12. Myllyharju J (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33–43

    Article  CAS  Google Scholar 

  13. Fenske NA, Lober CW (1986) Structural and functional changes of normal aging skin. J Am Acad Dermatol 15:571–585

    Article  CAS  Google Scholar 

  14. Shuster S, Black MM, McVitie E (1975) The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol 93:639–643

    Article  CAS  Google Scholar 

  15. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  Google Scholar 

  16. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9

    Article  Google Scholar 

  17. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Investig 117:524–529

    Article  CAS  Google Scholar 

  18. Gutiérrez-Fernández A, Soria-Valles C, Osorio FG et al (2015) Loss of MT1-MMP causes cell senescence and nuclear defects which can be reversed by retinoic acid. EMBO J 34:1875–1888

    Article  Google Scholar 

  19. Flurkey K, Papaconstantinou J, Miller RA et al (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A 98:6736–6741

    Article  CAS  Google Scholar 

  20. Wilkinson JE, Burmeister L, Brooks SV et al (2012) Rapamycin slows aging in mice. Aging Cell 11:675–682

    Article  CAS  Google Scholar 

  21. Ewald CY, Landis JN, Porter Abate J et al (2015) Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature 519:97–101

    Article  CAS  Google Scholar 

  22. Herovici C (1963) A polychrome stain for differentiating precollagen from collagen. Stain Technol 38:204–205

    Google Scholar 

  23. McAnulty RJ (2005) Methods for measuring hydroxyproline and estimating in vivo rates of collagen synthesis and degradation. Methods Mol Med 117:189–207

    CAS  PubMed  Google Scholar 

  24. Qiu B, Wei F, Sun X et al (2014) Measurement of hydroxyproline in collagen with three different methods. Mol Med Rep 10:1157–1163

    Article  CAS  Google Scholar 

  25. Naba A, Clauser KR, Hynes RO (2015) Enrichment of extracellular matrix proteins from tissues and digestion into peptides for mass spectrometry analysis. J Vis Exp 101:e53057

    Google Scholar 

  26. Kramer JM (2005) Basement membranes, WormBook : the online review of C elegans biology. pp 1–15

    Google Scholar 

  27. Page AP and Johnstone IL (2007) The cuticle, WormBook : the online review of C elegans biology. pp 1–15

    Google Scholar 

  28. Leushner JR, Semple NL, Pasternak J (1979) Isolation and characterization of the cuticle from the free-living nematode Panagrellus silusiae. Biochim Biophys Acta 580:166–174

    Article  CAS  Google Scholar 

  29. Cox GN, Kusch M, Edgar RS (1981) Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol 90:7–17

    Article  CAS  Google Scholar 

  30. Treuting PM, Snyder JM (2015) Mouse necropsy. Curr Protoc Mouse Biol 5:223–233

    Article  Google Scholar 

  31. Stiernagle T (2006) Maintenance of C. elegans, WormBook : the online review of C elegans biology. pp 1–11

    Google Scholar 

  32. Fischer AH, Jacobson KA, Rose J et al (2008) Paraffin embedding tissue samples for sectioning. CSH Protoc 2008:pdb.prot4989

    PubMed  Google Scholar 

  33. Duerr JS (2006) Immunohistochemistry, WormBook : the online review of C elegans biology. pp 1–61

    Google Scholar 

  34. Davis BO, Anderson GL, Dusenbery DB (1982) Total luminescence spectroscopy of fluorescence changes during aging in Caenorhabditis elegans. Biochemistry 21:4089–4095

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marjolein Wildwater for sharing her improved freeze-cracking protocol, Eline Jongsma for her assistance in adapting the freeze-cracking protocol, Salome Brütsch and Hayley Hiebert for their help to develop the C. elegans Herovici staining protocol, Anna Bircher for contributing to the early stages of the cuticle isolation protocols and imaging cuticles, Max Hess for providing the C. elegans example image, and Jan M. Gebauer for bioinformatic prediction of potential prolines in collagens that might become hydroxylated in C. elegans. Some C. elegans strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). This work was supported by the Swiss National Science Foundation [PZ00P3 161512] to S.P. and M.R.B. and [PP00P3 163898] to A.C.T., C.S., and C.Y.E. Alina C. Teuscher and Cyril Statzer contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia R. Bordoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Teuscher, A.C., Statzer, C., Pantasis, S., Bordoli, M.R., Ewald, C.Y. (2019). Assessing Collagen Deposition During Aging in Mammalian Tissue and in Caenorhabditis elegans. In: Sagi, I., Afratis, N. (eds) Collagen. Methods in Molecular Biology, vol 1944. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9095-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9095-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9094-8

  • Online ISBN: 978-1-4939-9095-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics