Skip to main content

Resolving Roadblocks to Telomere Replication

  • Protocol
  • First Online:
Book cover DNA Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1999))

Abstract

The maintenance of genome stability in eukaryotic cells relies on accurate and efficient replication along each chromosome following every cell division. The terminal position, repetitive sequence, and structural complexities of the telomeric DNA make the telomere an inherently difficult region to replicate within the genome. Thus, despite functioning to protect genome stability mammalian telomeres are also a source of replication stress and have been recognized as common fragile sites within the genome. Telomere fragility is exacerbated at telomeres that rely on the Alternative Lengthening of Telomeres (ALT) pathway. Like common fragile sites, ALT telomeres are prone to chromosome breaks and are frequent sites of recombination suggesting that ALT telomeres are subjected to chronic replication stress. Here, we will review the features of telomeric DNA that challenge the replication machinery and also how the cell overcomes these challenges to maintain telomere stability and ensure the faithful duplication of the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith JD, Comeau L, Rosenfield S et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514. https://doi.org/10.1016/S0092-8674(00)80760-6

    Article  CAS  PubMed  Google Scholar 

  2. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334. https://doi.org/10.1146/annurev.genet.41.110306.130350

    Article  CAS  PubMed  Google Scholar 

  3. Levy MZ, Allsopp RC, Futcher AB et al (1992) Telomere end-replication problem and cell aging. J Mol Biol 225:951–960

    Article  CAS  PubMed  Google Scholar 

  4. Prioleau M-N, MacAlpine DM (2016) DNA replication origins-where do we begin? Genes Dev 30:1683–1697. https://doi.org/10.1101/gad.285114.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Donovan S, Harwood J, Drury LS, Diffley JF (1997) Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A 94:5611–5616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374. https://doi.org/10.1146/annurev.biochem.71.110601.135425

    Article  CAS  PubMed  Google Scholar 

  7. Diffley JF, Cocker JH, Dowell SJ, Rowley A (1994) Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78:303–316

    Article  CAS  PubMed  Google Scholar 

  8. Cocker JH, Piatti S, Santocanale C et al (1996) An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379:180–182. https://doi.org/10.1038/379180a0

    Article  CAS  PubMed  Google Scholar 

  9. Speck C, Chen Z, Li H, Stillman B (2005) ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol 12:965–971. https://doi.org/10.1038/nsmb1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen S, de Vries MA, Bell SP (2007) Orc6 is required for dynamic recruitment of Cdt1 during repeated Mcm2-7 loading. Genes Dev 21:2897–2907. https://doi.org/10.1101/gad.1596807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134. https://doi.org/10.1038/357128a0

    Article  CAS  PubMed  Google Scholar 

  12. Evrin C, Clarke P, Zech J et al (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci 106:20240–20245. https://doi.org/10.1073/pnas.0911500106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arias EE, Walter JC (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21:497–518. https://doi.org/10.1101/gad.1508907

    Article  CAS  PubMed  Google Scholar 

  14. Tada S, Li A, Maiorano D et al (2001) Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 3:107–113. https://doi.org/10.1038/35055000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wohlschlegel JA, Dwyer BT, Dhar SK et al (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290:2309–2312. https://doi.org/10.1126/science.290.5500.2309

    Article  CAS  PubMed  Google Scholar 

  16. Nishitani H, Sugimoto N, Roukos V et al (2006) Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 25:1126–1136. https://doi.org/10.1038/sj.emboj.7601002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Zhao Q, Liao R et al (2003) The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 278:30854–30858. https://doi.org/10.1074/jbc.C300251200

    Article  CAS  PubMed  Google Scholar 

  18. Stillman B (2005) Origin recognition and the chromosome cycle. FEBS Lett 579:877–884. https://doi.org/10.1016/j.febslet.2004.12.011

    Article  CAS  PubMed  Google Scholar 

  19. Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258. https://doi.org/10.1016/j.molcel.2009.12.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parker MW, Botchan MR, Berger JM (2017) Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 52:107–144. https://doi.org/10.1080/10409238.2016.1274717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeeles JTP, Deegan TD, Janska A et al (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519:431–435. https://doi.org/10.1038/nature14285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rhind N, Gilbert DM (2013) DNA replication timing. Cold Spring Harb Perspect Biol 5:a010132. https://doi.org/10.1101/cshperspect.a010132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edwards MC, Tutter AV, Cvetic C et al (2002) MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem 277:33049–33057. https://doi.org/10.1074/jbc.M204438200

    Article  CAS  PubMed  Google Scholar 

  24. Ge XQ, Jackson DA, Blow JJ (2007) Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21:3331–3341. https://doi.org/10.1101/gad.457807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Woodward AM, Göhler T, Luciani MG et al (2006) Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173:673–683. https://doi.org/10.1083/jcb.200602108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Masai H, Matsumoto S, You Z et al (2010) Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 79:89–130. https://doi.org/10.1146/annurev.biochem.052308.103205

    Article  CAS  PubMed  Google Scholar 

  27. Toledo L, Neelsen KJ, Lukas J (2017) Replication catastrophe: when a checkpoint fails because of exhaustion. Mol Cell 66:735–749. https://doi.org/10.1016/j.molcel.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  28. Deng SK, Chen H, Symington LS (2015) Replication protein A prevents promiscuous annealing between short sequence homologies: implications for genome integrity. BioEssays 37:305–313. https://doi.org/10.1002/bies.201400161

    Article  CAS  PubMed  Google Scholar 

  29. Zou Y, Liu Y, Wu X, Shell SM (2006) Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208:267–273. https://doi.org/10.1002/jcp.20622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burgers PMJ, Kunkel TA (2017) Eukaryotic DNA replication fork. Annu Rev Biochem 86:417–438. https://doi.org/10.1146/annurev-biochem-061516-044709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drosopoulos WC, Kosiyatrakul ST, Yan Z et al (2012) Human telomeres replicate using chromosome-specific, rather than universal, replication programs. J Cell Biol 197:253–266. https://doi.org/10.1083/jcb.201112083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kurth I, Gautier J (2010) Origin-dependent initiation of DNA replication within telomeric sequences. Nucleic Acids Res 38:467–476. https://doi.org/10.1093/nar/gkp929

    Article  CAS  PubMed  Google Scholar 

  33. Martínez P, Blasco MA (2015) Replicating through telomeres: a means to an end. Trends Biochem Sci 40:504–515

    Article  PubMed  Google Scholar 

  34. Huang C, Dai X, Chai W (2012) Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res 22:1681–1695. https://doi.org/10.1038/cr.2012.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu P, Takai H, de Lange T (2012) Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150:39–52. https://doi.org/10.1016/j.cell.2012.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang F, Stewart JA, Kasbek C et al (2012) Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep 2:1096–1103. https://doi.org/10.1016/j.celrep.2012.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stewart JA, Wang F, Chaiken MF et al (2012) Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J 31:3537–3549. https://doi.org/10.1038/emboj.2012.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192. https://doi.org/10.1146/annurev.genet.41.042007.165900

    Article  CAS  PubMed  Google Scholar 

  39. Sutherland GR (1979) Heritable fragile sites on human chromosomes I. Factors affecting expression in lymphocyte culture. Am J Hum Genet 31:125–135

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sutherland GR (1977) Fragile sites on human chromosomes: demonstration of their dependence on the type of tissue culture medium. Science 197:265–266

    Article  CAS  PubMed  Google Scholar 

  41. Glover TW, Berger C, Coyle J, Echo B (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67:136–142

    Article  CAS  PubMed  Google Scholar 

  42. Glover TW, Stein CK (1987) Induction of sister chromatid exchanges at common fragile sites. Am J Hum Genet 41:882–890

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Feichtinger W, Schmid M (1989) Increased frequencies of sister chromatid exchanges at common fragile sites (1)(q42) and (19)(q13). Hum Genet 83:145–147

    Article  CAS  PubMed  Google Scholar 

  44. Hecht F, Sutherland GR (1984) Fragile sites and cancer breakpoints. Cancer Genet Cytogenet 12:179–181. https://doi.org/10.1016/0165-4608(84)90132-8

    Article  CAS  PubMed  Google Scholar 

  45. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9. https://doi.org/10.1038/ncb2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bermejo R, Lai MS, Foiani M (2012) Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol Cell 45:710–718. https://doi.org/10.1016/j.molcel.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  47. Helmrich A, Ballarino M, Nudler E, Tora L (2013) Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol 20:412–418. https://doi.org/10.1038/nsmb.2543

    Article  CAS  PubMed  Google Scholar 

  48. Aguilera A, García-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124. https://doi.org/10.1016/j.molcel.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  49. Bester AC, Roniger M, Oren YS et al (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446. https://doi.org/10.1016/j.cell.2011.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Byun TS, Pacek M, Yee M et al (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19:1040–1052. https://doi.org/10.1101/gad.1301205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Toledo LI, Altmeyer M, Rask MB et al (2014) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 156:374

    Article  CAS  Google Scholar 

  52. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548. https://doi.org/10.1126/science.1083430

    Article  CAS  PubMed  Google Scholar 

  53. Ward IM, Minn K, Chen J (2004) UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. J Biol Chem 279:9677–9680. https://doi.org/10.1074/jbc.C300554200

    Article  CAS  PubMed  Google Scholar 

  54. Vassin VM, Anantha RW, Sokolova E et al (2009) Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. J Cell Sci 122:4070–4080. https://doi.org/10.1242/jcs.053702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bianco JN, Poli J, Saksouk J et al (2012) Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. Methods 57:149–157. https://doi.org/10.1016/j.ymeth.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  56. Nam EA, Cortez D (2011) ATR signalling: more than meeting at the fork. Biochem J 436:527–536. https://doi.org/10.1042/BJ20102162

    Article  CAS  PubMed  Google Scholar 

  57. Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627. https://doi.org/10.1038/nrm2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elvers I, Johansson F, Groth P et al (2011) UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Res 39:7049–7057. https://doi.org/10.1093/nar/gkr420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Neelsen KJ, Lopes M (2015) Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 16:207–220

    Article  CAS  PubMed  Google Scholar 

  60. McIntosh D, Blow JJ (2012) Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb Perspect Biol 4:a012955–a012955. https://doi.org/10.1101/cshperspect.a012955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rybak P, Waligórska A, Bujnowicz Ł et al (2015) Activation of new replication foci under conditions of replication stress. Cell Cycle 14:2634–2647. https://doi.org/10.1080/15384101.2015.1064566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ibarra A, Schwob E, Méndez J (2008) Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci 105:8956–8961. https://doi.org/10.1073/pnas.0803978105

    Article  PubMed  PubMed Central  Google Scholar 

  63. Drosopoulos WC, Kosiyatrakul ST, Schildkraut CL (2015) BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J Cell Biol 210:191–208. https://doi.org/10.1083/jcb.201410061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hanada K, Budzowska M, Davies SL et al (2007) The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol 14:1096–1104. https://doi.org/10.1038/nsmb1313

    Article  CAS  PubMed  Google Scholar 

  65. Petermann E, Orta ML, Issaeva N et al (2010) Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 37:492–502. https://doi.org/10.1016/j.molcel.2010.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mehta A, Haber JE (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6:a016428. https://doi.org/10.1101/cshperspect.a016428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Llorente B, Smith CE, Symington LS (2008) Break-induced replication: what is it and what is it for? Cell Cycle 7:859–864. https://doi.org/10.4161/cc.7.7.5613

    Article  CAS  PubMed  Google Scholar 

  68. Miller KM, Rog O, Cooper JP (2006) Semi-conservative DNA replication through telomeres requires Taz1. Nature 440:824–828. https://doi.org/10.1038/nature04638

    Article  CAS  PubMed  Google Scholar 

  69. Makovets S, Herskowitz I, Blackburn EH (2004) Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions. Mol Cell Biol 24:4019–4031. https://doi.org/10.1128/MCB.24.9.4019-4031.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sfeir A, Kosiyatrakul ST, Hockemeyer D et al (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103. https://doi.org/10.1016/j.cell.2009.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ohki R, Ishikawa F (2004) Telomere-bound TRF1 and TRF2 stall the replication fork at telomeric repeats. Nucleic Acids Res 32:1627–1637. https://doi.org/10.1093/nar/gkh309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pinzaru AM, Hom RA, Beal A et al (2016) Telomere replication stress induced by POT1 inactivation accelerates tumorigenesis. Cell Rep 15:2170–2184. https://doi.org/10.1016/j.celrep.2016.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ye J, Lenain C, Bauwens S et al (2010) TRF2 and Apollo cooperate with topoisomerase 2α to protect human telomeres from replicative damage. Cell 142:230–242. https://doi.org/10.1016/j.cell.2010.05.032

    Article  CAS  PubMed  Google Scholar 

  74. Martínez P, Thanasoula M, Muñoz P et al (2009) Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 23:2060–2075. https://doi.org/10.1101/gad.543509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hancock JM (1996) Simple sequences and the expanding genome. BioEssays 18:421–425. https://doi.org/10.1002/bies.950180512

    Article  CAS  PubMed  Google Scholar 

  76. Li Y-C, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  PubMed  Google Scholar 

  77. Fouché N, Ozgür S, Roy D, Griffith JD (2006) Replication fork regression in repetitive DNAs. Nucleic Acids Res 34:6044–6050. https://doi.org/10.1093/nar/gkl757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jurk D, Wilson C, Passos JF et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:4172. https://doi.org/10.1038/ncomms5172

    Article  CAS  PubMed  Google Scholar 

  79. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344. https://doi.org/10.1016/S0968-0004(02)02110-2

    Article  Google Scholar 

  80. van Loon B, Markkanen E, Hübscher U (2010) Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst) 9:604–616. https://doi.org/10.1016/j.dnarep.2010.03.004

    Article  CAS  Google Scholar 

  81. Opresko PL, Fan J, Danzy S et al (2005) Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res 33:1230–1239. https://doi.org/10.1093/nar/gki273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bruner SD, Norman DPG, Verdine GL (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403:859–866. https://doi.org/10.1038/35002510

    Article  CAS  PubMed  Google Scholar 

  83. Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366. https://doi.org/10.1038/334364a0

    Article  CAS  PubMed  Google Scholar 

  84. Tarsounas M, Tijsterman M (2013) Genomes and G-quadruplexes: for better or for worse. J Mol Biol 425:4782–4789. https://doi.org/10.1016/J.JMB.2013.09.026

    Article  CAS  PubMed  Google Scholar 

  85. Sundquist WI, Klug A (1989) Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342:825–829. https://doi.org/10.1038/342825a0

    Article  CAS  PubMed  Google Scholar 

  86. Rodriguez R, Miller KM, Forment JV et al (2012) Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 8:301–310. https://doi.org/10.1038/nchembio.780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rizzo A, Salvati E, Porru M et al (2009) Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ATR-dependent ATM signaling pathway. Nucleic Acids Res 37:5353–5364. https://doi.org/10.1093/nar/gkp582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Min J, Wright WE, Shay JW (2017) Alternative lengthening of telomeres mediated by mitotic DNA synthesis engages break-induced replication processes. Mol Cell Biol 37:e00226–e00217. https://doi.org/10.1128/MCB.00226-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Salvati E, Scarsella M, Porru M et al (2010) PARP1 is activated at telomeres upon G4 stabilization: possible target for telomere-based therapy. Oncogene 29:6280–6293. https://doi.org/10.1038/onc.2010.344

    Article  CAS  PubMed  Google Scholar 

  90. Mohaghegh P, Karow JK, Brosh RM et al (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29:2843–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sidorova JM, Li N, Folch A, Monnat RJ Jr (2008) The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 7:796–807. https://doi.org/10.4161/cc.7.6.5566

    Article  CAS  PubMed  Google Scholar 

  92. Crabbe L, Verdun RE, Haggblom CI, Karlseder J (2004) Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306:1951–1953. https://doi.org/10.1126/science.1103619

    Article  CAS  PubMed  Google Scholar 

  93. Damerla RR, Knickelbein KE, Strutt S et al (2012) Werner syndrome protein suppresses the formation of large deletions during the replication of human telomeric sequences. Cell Cycle 11:3036–3044. https://doi.org/10.4161/cc.21399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Opresko PL, von Kobbe C, Laine J-P et al (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277:41110–41119. https://doi.org/10.1074/jbc.M205396200

    Article  CAS  PubMed  Google Scholar 

  95. Zimmermann M, Kibe T, Kabir S, de Lange T (2014) TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes Dev 28:2477–2491. https://doi.org/10.1101/gad.251611.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vannier J-B, Pavicic-Kaltenbrunner V, Petalcorin MIR et al (2012) RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149:795–806. https://doi.org/10.1016/J.CELL.2012.03.030

    Article  CAS  PubMed  Google Scholar 

  97. Vannier J-B, Sandhu S, Petalcorin MI et al (2013). RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication) Science 342:239–242. https://doi.org/10.1126/science.1241779

    Article  CAS  PubMed  Google Scholar 

  98. Sanders CM (2010) Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem J 430:119–128. https://doi.org/10.1042/BJ20100612

    Article  CAS  PubMed  Google Scholar 

  99. Paeschke K, Bochman ML, Garcia PD et al (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497:458–462. https://doi.org/10.1038/nature12149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Snow BE, Mateyak M, Paderova J et al (2007) Murine Pif1 interacts with telomerase and is dispensable for telomere function in vivo. Mol Cell Biol 27:1017–1026. https://doi.org/10.1128/MCB.01866-06

    Article  CAS  PubMed  Google Scholar 

  101. Ribeyre C, Lopes J, Boulé J-B et al (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5:e1000475. https://doi.org/10.1371/journal.pgen.1000475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu Y, Shin-ya K, Brosh RM (2008) FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 28:4116–4128. https://doi.org/10.1128/MCB.02210-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Castillo Bosch P, Segura-Bayona S, Koole W et al (2014) FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J 33:2521–2533. https://doi.org/10.15252/embj.201488663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Déjardin J, Kingston RE (2009) Purification of proteins associated with specific genomic Loci. Cell 136:175–186. https://doi.org/10.1016/j.cell.2008.11.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Garcia-Exposito L, Bournique E, Bergoglio V et al (2016) Proteomic profiling reveals a specific role for translesion DNA polymerase η in the alternative lengthening of telomeres. Cell Rep 17:1858–1871. https://doi.org/10.1016/j.celrep.2016.10.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bhattacharjee A, Wang Y, Diao J, Price CM (2017) Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST. Nucleic Acids Res 45:12311–12324. https://doi.org/10.1093/nar/gkx878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sarek G, Vannier J-B, Panier S et al (2015) TRF2 recruits RTEL1 to telomeres in S phase to promote T-loop unwinding. Mol Cell 57:622–635. https://doi.org/10.1016/j.molcel.2014.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jahn A, Rane G, Paszkowski-Rogacz M et al (2017) ZBTB48 is both a vertebrate telomere-binding protein and a transcriptional activator. EMBO Rep 18:929–946. https://doi.org/10.15252/embr.201744095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li JSZ, Miralles Fusté J, Simavorian T et al (2017) TZAP: a telomere-associated protein involved in telomere length control. Science 355:638–641. https://doi.org/10.1126/science.aah6752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rivera T, Haggblom C, Cosconati S, Karlseder J (2017) A balance between elongation and trimming regulates telomere stability in stem cells. Nat Struct Mol Biol 24:30–39. https://doi.org/10.1038/nsmb.3335

    Article  CAS  PubMed  Google Scholar 

  111. Azzalin CM, Reichenbach P, Khoriauli L et al (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801. https://doi.org/10.1126/science.1147182

    Article  CAS  PubMed  Google Scholar 

  112. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236. https://doi.org/10.1038/ncb1685

    Article  CAS  PubMed  Google Scholar 

  113. Flynn RL, Cox KE, Jeitany M et al (2015) Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347:273–277. https://doi.org/10.1126/science.1257216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Flynn RL, Centore RC, O’Sullivan RJ et al (2011) TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471:532–536. https://doi.org/10.1038/nature09772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Porro A, Feuerhahn S, Reichenbach P, Lingner J (2010) Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol 30:4808–4817. https://doi.org/10.1128/MCB.00460-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Arnoult N, Van Beneden A, Decottignies A (2012) Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat Struct Mol Biol 19:948–956. https://doi.org/10.1038/nsmb.2364

    Article  CAS  PubMed  Google Scholar 

  117. Arora R, Lee Y, Wischnewski H et al (2014) RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun 5:5220. https://doi.org/10.1038/ncomms6220

    Article  CAS  PubMed  Google Scholar 

  118. Balk B, Maicher A, Dees M et al (2013) Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 20:1199–1205. https://doi.org/10.1038/nsmb.2662

    Article  CAS  PubMed  Google Scholar 

  119. Balk B, Dees M, Bender K, Luke B (2014) The differential processing of telomeres in response to increased telomeric transcription and RNA-DNA hybrid accumulation. RNA Biol 11:95–100. https://doi.org/10.4161/rna.27798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Costantino L, Koshland D (2015) The Yin and Yang of R-loop biology. Curr Opin Cell Biol 34:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16:583–597. https://doi.org/10.1038/nrg3961

    Article  CAS  PubMed  Google Scholar 

  122. Richard P, Manley JL (2017) R loops and links to human disease. J Mol Biol 429:3168–3180

    Article  CAS  PubMed  Google Scholar 

  123. Houlard M, Artus J, Léguillier T et al (2011) DNA-RNA hybrids contribute to the replication dependent genomic instability induced by Omcg1 deficiency. Cell Cycle 10:108–117. https://doi.org/10.4161/cc.10.1.14379

    Article  CAS  PubMed  Google Scholar 

  124. Neil AJ, Liang MU, Khristich AN et al (2018) RNA–DNA hybrids promote the expansion of Friedreich’s ataxia (GAA)n repeats via break-induced replication. Nucleic Acids Res 46:3487–3497. https://doi.org/10.1093/nar/gky099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sollier J, Cimprich KA (2015) Breaking bad: R-loops and genome integrity. Trends Cell Biol 25:514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Graf M, Bonetti D, Lockhart A et al (2017) Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170:72–85.e14. https://doi.org/10.1016/j.cell.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  127. De Amicis A, Piane M, Ferrari F et al (2011) Role of senataxin in DNA damage and telomeric stability. DNA Repair (Amst) 10:199–209. https://doi.org/10.1016/j.dnarep.2010.10.012

    Article  CAS  Google Scholar 

  128. Skourti-Stathaki K, Proudfoot NJ, Gromak N (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42:794–805. https://doi.org/10.1016/j.molcel.2011.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hatchi E, Skourti-Stathaki K, Ventz S et al (2015) BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell 57:636–647. https://doi.org/10.1016/j.molcel.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hodroj D, Recolin B, Serhal K et al (2017) An ATR-dependent function for the Ddx19 RNA helicase in nuclear R-loop metabolism. EMBO J 36:1182–1198. https://doi.org/10.15252/embj.201695131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mischo HE, Gómez-González B, Grzechnik P et al (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41:21–32. https://doi.org/10.1016/j.molcel.2010.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5:a012716. https://doi.org/10.1101/cshperspect.a012716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Grudic A, Jul-Larsen Å, Haring SJ et al (2007) Replication protein A prevents accumulation of single-stranded telomeric DNA in cells that use alternative lengthening of telomeres. Nucleic Acids Res 35:7267–7278. https://doi.org/10.1093/nar/gkm738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. O’Sullivan RJ, Arnoult N, Lackner DH et al (2014) Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nat Struct Mol Biol 21:167–174. https://doi.org/10.1038/nsmb.2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sirbu BM, McDonald WH, Dungrawala H et al (2013) Identification of proteins at active, stalled, and collapsed replication forks using isolation of proteins on nascent DNA (iPOND) coupled with mass spectrometry. J Biol Chem 288:31458–31467. https://doi.org/10.1074/jbc.M113.511337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sirbu BM, Couch FB, Feigerle JT et al (2011) Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 25:1320–1327. https://doi.org/10.1101/gad.2053211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27. https://doi.org/10.1016/j.molcel.2005.11.015

    Article  CAS  PubMed  Google Scholar 

  138. Burrell RA, McClelland SE, Endesfelder D et al (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature 494:492–496. https://doi.org/10.1038/nature11935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chan KL, Palmai-Pallag T, Ying S, Hickson ID (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11:753–760. https://doi.org/10.1038/ncb1882

    Article  CAS  PubMed  Google Scholar 

  140. Macheret M, Halazonetis TD (2015) DNA replication stress as a hallmark of cancer. Annu Rev Pathol 10:425–448. https://doi.org/10.1146/annurev-pathol-012414-040424

    Article  CAS  PubMed  Google Scholar 

  141. Barefield C, Karlseder J (2012) The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Res 40:7358–7367. https://doi.org/10.1093/nar/gks407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gelot C, Magdalou I, Lopez B (2015) Replication stress in mammalian cells and its consequences for mitosis. Genes (Basel) 6:267–298. https://doi.org/10.3390/genes6020267

    Article  CAS  Google Scholar 

  143. Naim V, Rosselli F (2009) The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 11:761–768. https://doi.org/10.1038/ncb1883

    Article  CAS  PubMed  Google Scholar 

  144. Sobinoff AP, Allen JA, Neumann AA et al (2017) BLM and SLX4 play opposing roles in recombination-dependent replication at human telomeres. EMBO J 36:2907–2919. https://doi.org/10.15252/embj.201796889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mankouri HW, Huttner D, Hickson ID (2013) How unfinished business from S-phase affects mitosis and beyond. EMBO J 32:2661–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  147. Heaphy CM, Subhawong AP, Hong SM et al (2011) Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 179:1608–1615. https://doi.org/10.1016/j.ajpath.2011.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bryan TM, Englezou A, Gupta J et al (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14:4240–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dunham MA, Neumann AA, Fasching CL, Reddel RR (2000) Telomere maintenance by recombination in human cells. Nat Genet 26:447–450. https://doi.org/10.1038/82586

    Article  CAS  PubMed  Google Scholar 

  150. Nabetani A, Yokoyama O, Ishikawa F (2004) Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J Biol Chem 279:25849–25857. https://doi.org/10.1074/jbc.M312652200

    Article  CAS  PubMed  Google Scholar 

  151. Jiang W-Q, Zhong Z-H, Henson JD et al (2005) Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex. Mol Cell Biol 25:2708–2721. https://doi.org/10.1128/MCB.25.7.2708-2721.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yeager TR, Neumann AA, Englezou A et al (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59:4175–4179

    CAS  PubMed  Google Scholar 

  153. Tokutake Y, Matsumoto T, Watanabe T et al (1998) Extra-chromosomal telomere repeat DNA in telomerase-negative immortalized cell lines. Biochem Biophys Res Commun 247:765–772. https://doi.org/10.1006/bbrc.1998.8876

    Article  CAS  PubMed  Google Scholar 

  154. Nabetani A, Ishikawa F (2009) Unusual telomeric DNAs in human telomerase-negative immortalized cells. Mol Cell Biol 29:703–713. https://doi.org/10.1128/MCB.00603-08

    Article  CAS  PubMed  Google Scholar 

  155. Dilley RL, Verma P, Cho NW et al (2016) Break-induced telomere synthesis underlies alternative telomere maintenance. Nature 539:54–58. https://doi.org/10.1038/nature20099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Roumelioti F, Sotiriou SK, Katsini V et al (2016) Alternative lengthening of human telomeres is a conservative DNA replication process with features of break-induced replication. EMBO Rep 17:1731–1737. https://doi.org/10.15252/embr.201643169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Anand RP, Lovett ST, Haber JE (2013) Break-induced DNA replication. Cold Spring Harb Perspect Biol 5:a010397. https://doi.org/10.1101/cshperspect.a010397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sotiriou SK, Kamileri I, Lugli N et al (2016) Mammalian RAD52 functions in break-induced replication repair of collapsed DNA replication forks. Mol Cell 64:1127–1134. https://doi.org/10.1016/j.molcel.2016.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Costantino L, Sotiriou SK, Rantala JK et al (2014) Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343:88–91. https://doi.org/10.1126/science.1243211

    Article  CAS  PubMed  Google Scholar 

  160. Ciccia A, Bredemeyer AL, Sowa ME et al (2009) The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev 23:2415–2425. https://doi.org/10.1101/gad.1832309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bansbach CE, Bétous R, Lovejoy CA et al (2009) The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 23:2405–2414. https://doi.org/10.1101/gad.1839909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jingsong Y, Ghosal G, Junjie C (2009) The annealing helicase HARP protects stalled replication forks. Genes Dev 23:2394–2399. https://doi.org/10.1101/gad.1836409

    Article  CAS  Google Scholar 

  163. Couch FB, Bansbach CE, Driscoll R et al (2013) ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 27:1610–1623. https://doi.org/10.1101/gad.214080.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cox KE, Maréchal A, Flynn RL (2016) SMARCAL1 resolves replication stress at ALT telomeres. Cell Rep 14:1032–1040. https://doi.org/10.1016/j.celrep.2016.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Poole LA, Zhao R, Glick GG et al (2015) SMARCAL1 maintains telomere integrity during DNA replication. Proc Natl Acad Sci 112:14864–14869. https://doi.org/10.1073/pnas.1510750112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Diplas BH, He X, Brosnan-Cashman JA et al (2018) The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat Commun 9:2087. https://doi.org/10.1038/s41467-018-04448-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cho NW, Dilley RL, Lampson MA, Greenberg RA (2014) Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159:108–121. https://doi.org/10.1016/j.cell.2014.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Henson JD, Cao Y, Huschtscha LI et al (2009) DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat Biotechnol 27:1181–1185. https://doi.org/10.1038/nbt.1587

    Article  CAS  PubMed  Google Scholar 

  169. Min J, Wright WE, Shay JW (2017) Alternative lengthening of telomeres can be maintained by preferential elongation of lagging strands. Nucleic Acids Res 45:2615–2628. https://doi.org/10.1093/nar/gkw1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pickett HA, Reddel RR (2012) The role of telomere trimming in normal telomere length dynamics. Cell Cycle 11:1309–1315. https://doi.org/10.4161/cc.19632

    Article  CAS  PubMed  Google Scholar 

  171. Pickett HA, Cesare AJ, Johnston RL et al (2009) Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J 28:799–809. https://doi.org/10.1038/emboj.2009.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lee M, Hills M, Conomos D et al (2014) Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes. Nucleic Acids Res 42:1733–1746. https://doi.org/10.1093/nar/gkt1117

    Article  CAS  PubMed  Google Scholar 

  173. Conomos D, Stutz MD, Hills M et al (2012) Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells. J Cell Biol 199:893–906. https://doi.org/10.1083/jcb.201207189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Varley H, Pickett HA, Foxon JL et al (2002) Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells. Nat Genet 30:301–305. https://doi.org/10.1038/ng834

    Article  PubMed  Google Scholar 

  175. Conomos D, Reddel RR, Pickett HA (2014) NuRD–ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination. Nat Struct Mol Biol 21:760–770. https://doi.org/10.1038/nsmb.2877

    Article  CAS  PubMed  Google Scholar 

  176. Lovejoy CA, Li W, Reisenweber S et al (2012) Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet 8:e1002772. https://doi.org/10.1371/journal.pgen.1002772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Heaphy CM, De Wilde RF, Jiao Y et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Leung JW-C, Ghosal G, Wang W et al (2013) Alpha thalassemia/mental retardation syndrome X-linked gene product ATRX is required for proper replication restart and cellular resistance to replication stress. J Biol Chem 288:6342–6350. https://doi.org/10.1074/jbc.M112.411603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Huh MS, Ivanochko D, Hashem LE et al (2016) Stalled replication forks within heterochromatin require ATRX for protection. Cell Death Dis 7:e2220. https://doi.org/10.1038/cddis.2016.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Watson LA, Solomon LA, Li JR et al (2013) Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. J Clin Invest 123:2049–2063. https://doi.org/10.1172/JCI65634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Clynes D, Jelinska C, Xella B et al (2015) Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat Commun 6:7538. https://doi.org/10.1038/ncomms8538

    Article  PubMed  Google Scholar 

  182. Napier CE, Huschtscha LI, Harvey A et al (2015) ATRX represses alternative lengthening of telomeres. Oncotarget 6:16543–16558. https://doi.org/10.18632/oncotarget.3846

    Article  PubMed  PubMed Central  Google Scholar 

  183. Goldberg AD, Banaszynski LA, Noh K-M et al (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678–691. https://doi.org/10.1016/j.cell.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Arora R, Azzalin CM (2015) Telomere elongation chooses TERRA ALTernatives. RNA Biol 12:938–941. https://doi.org/10.1080/15476286.2015.1065374

    Article  PubMed  PubMed Central  Google Scholar 

  185. Episkopou H, Draskovic I, Van Beneden A et al (2014) Alternative lengthening of telomeres is characterized by reduced compaction of telomeric chromatin. Nucleic Acids Res 42:4391–4405. https://doi.org/10.1093/nar/gku114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Herrick J, Bensimon A (1999) Single molecule analysis of DNA replication. Biochimie 81:859–871

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Litman Flynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mason-Osann, E., Gali, H., Flynn, R.L. (2019). Resolving Roadblocks to Telomere Replication. In: Balakrishnan, L., Stewart, J. (eds) DNA Repair. Methods in Molecular Biology, vol 1999. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9500-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9500-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9499-1

  • Online ISBN: 978-1-4939-9500-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics