Skip to main content

Chemical Cross-Linking and Mass Spectrometric Analysis of the Endogenous Yeast Exosome Complexes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2062))

Abstract

Chemical cross-linking and mass spectrometric readout (CX-MS) has become a useful toolkit for structural analysis of protein complexes. CX-MS enables rapid detection of a larger number of cross-link peptides from the chemically cross-linked protein assembly, providing invaluable cross-link spatial restraints to understand the architecture of the complex. Since CX-MS is complementary with other structural and computational modeling tools, it can be used for integrative structural determination of large native protein assemblies. However, due to technical limitations, current CX-MS applications have still been predominantly confined to complexes reconstituted from recombinant proteins where large amount of purified materials are available. Cross-linking and hybrid structural proteomic analysis of endogenous protein complexes remains a challenge. In this chapter, we present a protocol that efficiently couples affinity capture of endogenous complexes with sensitive CX-MS analysis, with particular application to the yeast RNA processing exosome complexes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alber F, Forster F, Korkin D, Topf M, Sali A (2008) Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem 77:443–477

    Article  CAS  PubMed  Google Scholar 

  2. Chait BT, Cadene M, Olinares PD, Rout MP, Shi Y (2016) Revealing higher order protein structure using mass spectrometry. J Am Soc Mass Spectrom 27(6):952–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rappsilber J (2011) The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 173(3):530–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohen SL, Chait BT (2001) Mass spectrometry as a tool for protein crystallography. Annu Rev Biophys Biomol Struct 30:67–85

    Article  CAS  PubMed  Google Scholar 

  5. Leitner A, Reischl R, Walzthoeni T, Herzog F, Bohn S, Forster F, Aebersold R (2012) Expanding the chemical cross-linking toolbox by the use of multiple proteases and enrichment by size exclusion chromatography. Mol Cell Proteomics 11(3):M111 014126

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shi Y, Fernandez-Martinez J, Tjioe E, Pellarin R, Kim SJ, Williams R, Schneidman-Duhovny D, Sali A, Rout MP, Chait BT (2014) Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex. Mol Cell Proteomics 13(11):2927–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kahraman A, Herzog F, Leitner A, Rosenberger G, Aebersold R, Malmstrom L (2013) Cross-link guided molecular modeling with ROSETTA. PLoS One 8(9):e73411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Young MM, Tang N, Hempel JC, Oshiro CM, Taylor EW, Kuntz ID, Gibson BW, Dollinger G (2000) High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc Natl Acad Sci U S A 97(11):5802–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin J, Chait BT (1997) Identification and characterization of posttranslational modifications of proteins by MALDI ion trap mass spectrometry. Anal Chem 69(19):4002–4009

    Article  CAS  PubMed  Google Scholar 

  10. Trester-Zedlitz M, Kamada K, Burley SK, Fenyo D, Chait BT, Muir TW (2003) A modular cross-linking approach for exploring protein interactions. J Am Chem Soc 125(9):2416–2425

    Article  CAS  PubMed  Google Scholar 

  11. Eliuk S, Makarov A (2015) Evolution of orbitrap mass spectrometry instrumentation. Annu Rev Anal Chem 8:61–80

    Article  Google Scholar 

  12. Fernandez-Martinez J, Kim SJ, Shi Y, Upla P, Pellarin R, Gagnon M, Chemmama IE, Wang J, Nudelman I, Zhang W, Williams R, Rice WJ, Stokes DL, Zenklusen D, Chait BT, Sali A, Rout MP (2016) Structure and function of the nuclear pore complex cytoplasmic mRNA export platform. Cell 167(5):1215–1228e1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi Y, Pellarin R, Fridy PC, Fernandez-Martinez J, Thompson MK, Li Y, Wang QJ, Sali A, Rout MP, Chait BT (2015) A strategy for dissecting the architectures of native macromolecular assemblies. Nat Methods 12(12):1135–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, Herricks T, Slaughter BD, Hogan JA, Upla P, Chemmama IE, Pellarin R, Echeverria I, Shivaraju M, Chaudhury AS, Wang J, Williams R, Unruh JR, Greenberg CH, Jacobs EY, Yu Z, de la Cruz MJ, Mironska R, Stokes DL, Aitchison JD, Jarrold MF, Gerton JL, Ludtke SJ, Akey CW, Chait BT, Sali A, Rout MP (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555(7697):475–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jishage M, Yu X, Shi Y, Ganesan SJ, Chen WY, Sali A, Chait BT, Asturias FJ, Roeder RG (2018) Architecture of pol II(G) and molecular mechanism of transcription regulation by Gdown1. Nat Struct Mol Biol 25(9):859–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Algret R, Fernandez-Martinez J, Shi Y, Kim SJ, Pellarin R, Cimermancic P, Cochet E, Sali A, Chait BT, Rout MP, Dokudovskaya S (2014) Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol Cell Proteomics 13(11):2855–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, Walzthoeni T, Leitner A, Beck M, Hartl FU, Ban N, Malmstrom L, Aebersold R (2012) Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337(6100):1348–1352

    Article  CAS  PubMed  Google Scholar 

  18. Sanghai ZA, Miller L, Molloy KR, Barandun J, Hunziker M, Chaker-Margot M, Wang JJ, Chait BT, Klinge S (2018) Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature 556(7699):126–12+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. LaCava J, Chandramouli N, Jiang H, Rout MP (2013) Improved native isolation of endogenous protein A-tagged protein complexes. BioTechniques 54(4):213–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olinares PD, Dunn AD, Padovan JC, Fernandez-Martinez J, Rout MP, Chait BT (2016) A robust workflow for native mass spectrometric analysis of affinity-isolated endogenous protein assemblies. Anal Chem 88(5):2799–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hakhverdyan Z, Domanski M, Hough LE, Oroskar AA, Oroskar AR, Keegan S, Dilworth DJ, Molloy KR, Sherman V, Aitchison JD, Fenyo D, Chait BT, Jensen TH, Rout MP, LaCava J (2015) Rapid, optimized interactomic screening. Nat Methods 12(6):553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu JJ, Niu CY, Wu Y, Tan D, Wang Y, Ye MD, Liu Y, Zhao W, Zhou K, Liu QS, Dai J, Yang X, Dong MQ, Huang N, Wang HW (2016) CryoEM structure of yeast cytoplasmic exosome complex. Cell Res 26(7):822–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cristea IM, Chait BT (2011) Conjugation of magnetic beads for immunopurification of protein complexes. Cold Spring Harb Protoc 2011(5):pdb prot5610

    Article  PubMed  PubMed Central  Google Scholar 

  24. LaCava J, Fernandez-Martinez J, Rout MP (2016) Native elution of yeast protein complexes obtained by affinity capture. Cold Spring Harb Protoc 2016(7)

    Google Scholar 

  25. Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I, Scheid JF, Oeffinger M, Nussenzweig MC, Fenyo D, Chait BT, Rout MP (2014) A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods 11(12):1253–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung SY, Choi JM, Rousseaux MWC, Malovannaya A, Kim JJ, Kutzera J, Wang Y, Huang Y, Zhu WM, Maity S, Zoghbi HY, Qin J (2017) An anatomically resolved mouse brain proteome reveals Parkinson disease-relevant pathways. Mol Cell Proteomics 16(4):581–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906

    Article  CAS  PubMed  Google Scholar 

  28. Rinner O, Seebacher J, Walzthoeni T, Mueller L, Beck M, Schmidt A, Mueller M, Aebersold R (2008) Identification of cross-linked peptides from large sequence databases (vol 5, pg 315, 2008). Nat Methods 5(8):748–748

    Article  CAS  Google Scholar 

  29. Yang B, Wu YJ, Zhu M, Fan SB, Lin J, Zhang K, Li S, Chi H, Li YX, Chen HF, Luo SK, Ding YH, Wang LH, Hao Z, Xiu LY, Chen S, Ye K, He SM, Dong MQ (2012) Identification of cross-linked peptides from complex samples. Nat Methods 9(9):904–906

    Article  CAS  PubMed  Google Scholar 

  30. Liu F, Lossl P, Scheltema R, Viner R, Heck AJR (2017) Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. Nat Commun 8:15473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gotze M, Pettelkau J, Fritzsche R, Ihling CH, Schafer M, Sinz A (2015) Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. J Am Soc Mass Spectrom 26(1):83–97

    Article  PubMed  Google Scholar 

  32. Trnka MJ, Baker PR, Robinson PJ, Burlingame AL, Chalkley RJ (2014) Matching cross-linked peptide spectra: only as good as the worse identification. Mol Cell Proteomics 13(2):420–434

    Article  CAS  PubMed  Google Scholar 

  33. Lima DB, de Lima TB, Balbuena TS, Neves-Ferreira AGC, Barbosa VC, Gozzo FC, Carvalho PC (2015) SIM-XL: a powerful and user-friendly tool for peptide cross-linking analysis. J Proteome 129:51–55

    Article  CAS  Google Scholar 

  34. Chen ZA, Fischer L, Cox J, Rappsilber J (2016) Quantitative cross-linking/mass spectrometry using isotope-labeled cross-linkers and MaxQuant. Mol Cell Proteomics 15(8):2769–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Courcelles M, Coulombe-Huntington J, Cossette E, Gingras AC, Thibault P, Tyers M (2017) CLMSVault: a software suite for protein cross-linking mass- spectrometry data analysis and visualization. J Proteome Res 16(7):2645–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gupta N, Bandeira N, Keich U, Pevzner PA (2011) Target-decoy approach and false discovery rate: when things may go wrong. J Am Soc Mass Spectrom 22(7):1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Russel D, Lasker K, Webb B, Velazquez-Muriel J, Tjioe E, Schneidman-Duhovny D, Peterson B, Sali A (2012) Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol 10(1):e1001244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Riccardo Pellarin (Institute of Pasteur) for preparing Fig. 4d; Junjie Wang (The Rockefeller University) for the development of CX-Circos.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xiang, Y., Shen, Z., Shi, Y. (2020). Chemical Cross-Linking and Mass Spectrometric Analysis of the Endogenous Yeast Exosome Complexes. In: LaCava, J., Vaňáčová, Š. (eds) The Eukaryotic RNA Exosome. Methods in Molecular Biology, vol 2062. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9822-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9822-7_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9821-0

  • Online ISBN: 978-1-4939-9822-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics