Skip to main content

Reconstitution of Depolarization and Ca2+-Evoked Secretion in Xenopus Oocytes Monitored by Membrane Capacitance

  • Protocol
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 440))

Summary

The identity of the proteins that constitute the “minimal molecular machinery” required for depolarization-evoked neurotransmitter release at synapses is still not fully disclosed. Using capacitance monitoring combined with heterologous protein expression in Xenopus oocytes, we were able to reconstitute a fast (<.5 s) secretion that was triggered directly by membrane depolarization. The functional assembly of voltage-gated Ca2+ channel (Cav1.2 or Cav2.2) coexpressed with syntaxin 1A, synaptosome-associated protein of 25kDa (SNAP-25), and synaptotagmin led to the reconstitution of depolarization-evoked secretion. Botulinum C1, botulinum A, and tetanus toxin were used to establish that this minimal set of proteins, named the excitosome complex, was necessary and sufficient for reconstituting depolarization-induced exocytosis. Similar to synaptic transmission, the capacitance changes were sensitive to neurotoxins, modulated by divalent cations (Ca2+, Ba2+, and Sr2+) or channels (Lc or N type; ionotropic glutamate GLUR3), and depended nonlinearly on extracellular divalent cation concentration. Expression of a recombinant intracellular domain of the calcium channel (Lc753–893) abolished evoked release in the reconstituted assay. Also, mutations at the synaptotagmin C2A polylysine motif, a channel interaction site, abolished depolarization-evoked capacitance transients, consistent with release studies in PC12 cells. Because of its improved speed, native trigger, and great experimental versatility, this reconstitution assay provides a novel, promising tool to study synaptic and nonsynaptic exocytosis and examine the role of other proteins implicated in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Katz, B., and Miledi, R. (1969) Spontaneous and evoked activity of motor nerve endings in calcium Ringer. J. Physiol. 203, 689–706.

    CAS  PubMed  Google Scholar 

  2. 2. Augustine, G.J., and Kasai, H. (2007) Bernard Katz, quantal transmitter release, and the foundations of presynaptic physiology. J. Physiol 578, 623–625.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Mayer, A. (2002) Membrane fusion in eukaryotic cells. Annu. Rev. Cell. Dev. Biol. 18, 289–314.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Jahn, R., Lang, T., and Sudhof, T.C. (2003) Membrane fusion. Cell 112, 519–533.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Martin, T.F. (2003) Tuning exocytosis for speed: fast and slow modes. Biochim. Biophys. Acta 1641, 157–165.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Weber, T., Zemelman, B.V., McNew, J.A., et al. (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Avery, J., Jahn, R., and Edwardson, J.M. (1999) Reconstitution of regulated exocytosis in cell-free systems: a critical appraisal. Annu. Rev. Physiol. 61, 777–807.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Cook, N.R., and Davidson, H.W. (2001) In vitro assays of vesicular transport. Traffic 2, 19–25.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Weimer, R.M., and Jorgensen, E.M. (2003) Controversies in synaptic vesicle exocytosis. J. Cell Sci. 116, 3661–3666.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Duman, J.G., and Forte, J.G. (2003) What is the role of SNARE proteins in membrane fusion? Am. J. Physiol. Cell Physiol. 285, C237–C249.

    CAS  PubMed  Google Scholar 

  11. 11. Szule, J.A., and Coorssen, J.R. (2003) Revisiting the role of SNAREs in exocytosis and membrane fusion. Biochim. Biophys. Acta 1641, 121–135.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Edwardson, J.M. (1998) A cell-free system for Ca2+-regulated exocytosis. Methods 16, 209–214.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Alder, J., Lu, B., Valtorta, F., Greengard, P., and Poo, M.M. (1992) Calcium-dependent transmitter secretion reconstituted in Xenopus oocytes: requirement for synaptophysin. Science 257, 657–661.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Cavalli, A., Eder-Colli, L., Dunant, Y., Loctin, F., and Morel, N. (1991) Release of acetylcholine by Xenopus oocytes injected with mRNAs from cholinergic neurons. EMBO J. 10, 1671–1675.

    CAS  PubMed  Google Scholar 

  15. 15. Scheuner, D., Logsdon, C.D., and Holz, R.W. (1992) Bovine chromaffin granule membranes undergo Ca(2+)-regulated exocytosis in frog oocytes. J. Cell Biol. 116, 359–365.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Marsal, J., Tigyi, G., and Miledi, R. (1995) Incorporation of acetylcholine receptors and Cl- channels in Xenopus oocytes injected with Torpedo electroplaque membranes. Proc. Natl. Acad. Sci. U. S. A. 92, 5224–5228.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Aleu, J., Martin-Satue, M., Navarro, P., et al. (2003) Release of ATP induced by hypertonic solutions in Xenopus oocytes. J. Physiol. 547, 209–219.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Trus, M., Wiser, O., Goodnough, M.C., and Atlas, D. (2001) The transmembrane domain of syntaxin 1A negatively regulates voltage-sensitive Ca(2+) channels. Neuroscience 104, 599–607.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Wiser, O., Bennett, M.K., and Atlas, D. (1996) Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. EMBO J. 15, 4100–4110.

    CAS  PubMed  Google Scholar 

  20. 20. Wiser, O., Trus, M., Hernandez, A., et al. (1999) The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc. Natl. Acad. Sci. U. S. A. 96, 248–253.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Tobi, D., Wiser, O., Trus, M., and Atlas, D. (1998) N-type voltage-sensitive calcium channel interacts with syntaxin, synaptotagmin and SNAP-25 in a multiprotein complex. Recept. Channels 6, 89–98.

    CAS  PubMed  Google Scholar 

  22. 22. Cohen, R., and Atlas, D. (2004) R-type voltage-gated Ca(2+) channel interacts with synaptic proteins and recruits synaptotagmin to the plasma membrane of Xenopus oocytes. Neuroscience 128, 831–841.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Bezprozvanny, I., Zhong, P., Scheller, R.H., and Tsien, R.W. (2000) Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating. Proc. Natl. Acad. Sci. U. S. A. 97, 13943–13948.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Atlas, D. (2001) Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J. Neurochem. 77, 972–985.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Atlas, D., Wiser, O., and Trus, M. (2001) The voltage-gated Ca2+ channel is the Ca2+ sensor of fast neurotransmitter release. Cell Mol. Neurobiol. 21, 717–731.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Cohen, R., Schmitt, B. M., and Atlas, D. (2005) Molecular identification and reconstitution of depolarization-induced exocytosis monitored by membrane capacitance. Biophys. J. 89, 4364–4373.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Schmitt, B.M., and Koepsell, H. (2002) An improved method for real-time monitoring of membrane capacitance in Xenopus laevis oocytes. Biophys. J. 82, 1345–1357.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Schmitt, B.M., and Koepsell, H. (2005) Alkali cation binding and permeation in the rat organic cation transporter rOCT2. J. Biol. Chem. 280, 24481–24490.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Lerner, I., Trus, M.,Cohen, R., Yizhar, O., Nussinovitch, I. and Atlas, D. (2006) Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis. J. Neurochem 97, 116–127.

    Article  CAS  PubMed  Google Scholar 

  30. 30. Cohen, R., Elferink, L.A., and Atlas, D. (2003) The C2A domain of synaptotagmin alters the kinetics of voltage-gated Ca2+ channels Ca(v)1.2 (Lc-type) and Ca(v)2.3 (R-type). J. Biol. Chem. 278, 9258–9266.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Scheuner, D., and Holz, R.W. (1994) Evidence that the ability to respond to a calcium stimulus in exocytosis is determined by the secretory granule membrane: comparison of exocytosis of injected bovine chromaffin granule membranes and endogenous cortical granules in Xenopus laevis oocytes. Cell Mol. Neurobiol. 14, 245–257.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Kohan, S.A., and Gundersen, C.B. (2003) Protein synthesis is required for the transition to Ca(2+)-dependent regulated secretion in progesterone-matured Xenopus oocytes. J. Exp. Zool. A Comp. Exp. Biol. 300, 113–125.

    Article  PubMed  Google Scholar 

  33. 33. Jaffe, L.A., and Schlichter, L.C. (1985) Fertilization-induced ionic conductances in eggs of the frog, Rana pipiens. J. Physiol. 358, 299–319.

    CAS  Google Scholar 

  34. 34. Jaffe, L.A., Hagiwara, S., and Kado, R.T. (1978) The time course of cortical vesicle fusion in sea urchin eggs observed as membrane capacitance changes. Dev. Biol. 67, 243–248.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cohen, R., Schmitt, B.M., Atlas, D. (2008). Reconstitution of Depolarization and Ca2+-Evoked Secretion in Xenopus Oocytes Monitored by Membrane Capacitance. In: Ivanov, A.I. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 440. Humana Press. https://doi.org/10.1007/978-1-59745-178-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-178-9_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-865-2

  • Online ISBN: 978-1-59745-178-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics