Skip to main content

Linkage Disequilibrium as a Tool for Detecting Signatures of Natural Selection

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 376))

Abstract

Natural selection has been theoretically and empirically proven to alter patterns of linkage disequilibrium (LD). Reciprocally, recombination, the driving force behind LD, modifies the signature of natural selection by reintroducing variation in a punctuate manner across the genome. To date, efforts to identify genes that have been subjected to historical selective pressure by examining polymorphic variation and allelic association have frequently fallen short of unambiguously distinguishing selection from other biological mechanisms. Contemporary genetic maps that describe LD in fine detail represent a much needed tool that can be exploited by researchers aiming to tease apart these opposing signals.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kimura, M. (1968) Evolutionary rate at the molecular level. Nature 217, 624–626.

    Article  CAS  PubMed  Google Scholar 

  2. Crow, J. F. and Kimura, M. (1970) An Introduction to Population Genetics Theory. Harper and Row, New York.

    Google Scholar 

  3. Holmquist, R., Jukes, T. H., and Pangburn, S. (1973) Evolution of transfer RNA. J. Mol. Biol. 78, 91–116.

    Article  CAS  PubMed  Google Scholar 

  4. Kimura, M. and Ota, T. (1973) Mutation and evolution at the molecular level. Genetics 73, 19–35.

    CAS  PubMed  Google Scholar 

  5. Haldane, J. (1927) A mathematical theory of natural and artificial selection. Part V. Selection and mutation. Proc. Camb. Phil. Soc. 23, 838–844.

    Article  Google Scholar 

  6. Weatherall, D. J., Miller, L. H., Baruch, D. I., et al. (2002) Malaria and the red cell. Hematology (Am Soc Hematol Educ Program) 1, 35–57.

    Article  Google Scholar 

  7. Simoons, F. J. (1969) Primary adult lactose intolerance and the milking habit: a problem in biological and cultural interrelations. I. Review of the medical research. Am. J. Dig. Dis. 14, 819–836.

    Article  CAS  PubMed  Google Scholar 

  8. Bersaglieri, T., Sabeti, P. C., Patterson, N., et al. (2004) Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  9. Jukes, T. H. and King, J. L. (1975) Evolutionary loss of ascorbic acid synthesizing ability. J. Hum. Evol. 4, 85–88.

    Article  Google Scholar 

  10. Nandi, A., Mukhopadhyay, C. K., Ghosh, M. K., Chattopadhyay, D. J., and Chatterjee, I. B. (1997) Evolutionary significance of vitamin C biosynthesis in terrestrial vertebrates. Free Radic. Biol. Med. 22, 1047–1054.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, X., Thomas, S. D., and Zhang, J. (2004) Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum. Mol. Genet. 13, 2671–2678.

    Article  CAS  PubMed  Google Scholar 

  12. Soranzo, N., Bufe, B., Sabeti, P. C., et al. (2005) Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr. Biol. 15, 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  13. Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.

    CAS  PubMed  Google Scholar 

  14. Taylor, M. F., Shen, Y., and Kreitman, M. E. (1995) A population genetic test of selection at the molecular level. Science 270, 1497–1499.

    Article  CAS  PubMed  Google Scholar 

  15. Fu, Y. X. and Li, W. H. (1993) Statistical tests of neutrality of mutations. Genetics 133, 693–709.

    CAS  PubMed  Google Scholar 

  16. Hudson, R. R., Kreitman, M., and Aguade, M. (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159.

    CAS  PubMed  Google Scholar 

  17. McDonald, J. H. and Kreitman, M. (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654.

    Article  CAS  PubMed  Google Scholar 

  18. Kreitman, M. (2000) Methods to detect selection in populations with applications to the human. Annu. Rev. Genomics Hum. Genet. 1, 539–659.

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen, R. (2005) Molecular signatures of natural selection. Annu. Rev. Genet. 39, 197–218.

    Article  CAS  PubMed  Google Scholar 

  20. Carrington, M., Kissner, T., Gerrard, B., Ivanov, S., O’Brien, S. J., and Dean, M. (1997) Novel alleles of the chemokine-receptor gene CCR5. Am. J. Hum. Genet. 61, 1261–1267.

    Article  CAS  PubMed  Google Scholar 

  21. Stephens, J. C., Reich, D. E., Goldstein, D. B., et al. (1998) Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62, 1507–1515.

    Article  CAS  PubMed  Google Scholar 

  22. Sabeti, P. C., Walsh, E., Schaffner, S. F., et al. (2005) The case for selection at CCR5-Delta32. PLoS Biol. 3, e378.

    Article  PubMed  Google Scholar 

  23. Kreitman, M. and Di Rienzo, A. (2004) Balancing claims for balancing selection. Trends Genet. 20, 300–304.

    Article  CAS  PubMed  Google Scholar 

  24. Smith, J. M. and Haigh, J. (1974) The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35.

    Article  CAS  PubMed  Google Scholar 

  25. Tapper, W., Collins, A., Gibson, J., Maniatis, N., Ennis, S., and Morton, N. E. (2005) A map of the human genome in linkage disequilibrium units. Proc. Natl. Acad. Sci. USA 102, 11,835–11,839.

    Article  CAS  PubMed  Google Scholar 

  26. Sabeti, P. C., Reich, D. E., Higgins, J. M., et al. (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837.

    Article  CAS  PubMed  Google Scholar 

  27. Ruwende, C. and Hill, A. (1998) Glucose-6-phosphate dehydrogenase deficiency and malaria. J. Mol. Med. 76, 581–588.

    Article  CAS  PubMed  Google Scholar 

  28. Nei, M. (1987) Equation 8.4. Molecular Evolutionary Genetics. Columbia University Press, New York, NY.

    Google Scholar 

  29. Tishkoff, S. A., Varkonyi, R., Cahinhinan, N., et al. (2001) Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293, 455–462.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, E. T., Kodama, G., Baldi, P., and Moyzis, R. K. (2006) Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc. Natl. Acad. Sci. USA 103, 135–140.

    Article  CAS  PubMed  Google Scholar 

  31. Serre, D., Nadon, R., and Hudson, T. J. (2005) Large-scale recombination rate patterns are conserved among human populations. Genome Res. 15, 1547–1552.

    Article  CAS  PubMed  Google Scholar 

  32. Stefansson, H., Helgason, A., Thorleifsson, G., et al. (2005) A common inversion under selection in Europeans. Nat. Genet. 37, 129–137.

    Article  CAS  PubMed  Google Scholar 

  33. Przeworski, M., Coop, G., and Wall, J. D. (2005) The signature of positive selection on standing genetic variation. Evolution Int. J. Org. Evolution 59, 2312–2323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Ennis, S. (2007). Linkage Disequilibrium as a Tool for Detecting Signatures of Natural Selection. In: Collins, A.R. (eds) Linkage Disequilibrium and Association Mapping. Methods in Molecular Biology™, vol 376. Humana Press. https://doi.org/10.1007/978-1-59745-389-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-389-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-669-6

  • Online ISBN: 978-1-59745-389-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics