Skip to main content

Three-Dimensional Analysis of Molecular Signals with Episcopic Imaging Techniques

  • Protocol
Reporter Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 411))

Abstract

This chapter describes two episcopic imaging methods, episcopic fluorescence image capturing (EFIC) and high-resolution episcopic microscopy (HREM). These allow analysis of molecular signals in a wide variety of biological samples such as tissues or embryos, in their precise anatomical and histological context. Both methods are designed to work with histologically prepared and whole-mount stained material, and both provide highresolution data sets that lend themselves to 3D visualization and modeling. Specimens are embedded in wax (EFIC) or resin (HREM) and sectioned on a microtome. During the sectioning process, a series of digital images of each freshly cut block surface is captured, using a microscope and CCD camera aligned with the position at which the microtome block holder comes to rest after each cutting cycle. The resulting stacks of serial images retain virtually exact alignment and are readily converted to volume data sets.

The two methods differ in how tissue architecture is visualized and hence how specific molecular signals are detected. EFIC uses endogenous, broad-range, tissue autofluorescence to reveal specimen structure. Addition of dyes to the wax embedding medium suppresses detection of any signal except that originating from the block surface. EFIC can be used to detect specific signals (such as LacZ) by virtue of their ability to suppress such fluorescence. In contrast, the plastic embedding medium used in HREM is strongly fluorescent, and tissue architecture is detected at the surface because of the ability of cellular and subcellular structures to suppress this signal. Specific signals generated as a result of chromogenic reactions can be visualized using band-pass filters that suppress the appearance of morphological data.

In both methods, the digital volume data show high contrast; for HREM, such data achieve true cellular resolution. Their intrinsic alignment greatly facilitates their use for 3D analysis of transgene activity that can be visualized in the context of complex cellular and tissue morphology. Both methods are relatively simple and can be set up using common laboratory apparatuses. Together, they provide powerful tools for analyzing gene function in embryogenesis or tissue remodeling and for investigating developmental malformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schneider, J. E., Bamforth, S. D., Farthing, C. R., Clarke, K., Neubauer, S., and Bhattacharya, S. (2003) Rapid identification and 3D reconstruction of complex cardiac malformations in transgenic mouse embryos using fast gradient echo sequence magnetic resonance imaging. J. Mol. Cell. Cardiol. 35, 217–222.

    Article  PubMed  CAS  Google Scholar 

  2. Sharpe, J., Ahlgren, U., Perry, P., et al. (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296, 541–545.

    Article  PubMed  CAS  Google Scholar 

  3. Denk, W. and Horstmann, H. (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329.

    Article  PubMed  Google Scholar 

  4. Effmann, E. L., Johnson, G. A., Smith, B. R., Talbott, G. A., and Cofer, G. (1988) Magnetic resonance microscopy of chick embryos in ovo. Teratology 38, 59–65.

    Article  PubMed  CAS  Google Scholar 

  5. Yu, Q., Shen, Y., Chatterjee, B., et al. (2004) ENU induced mutations causing congenital cardiovascular anomalies. Development 131, 6211–6223.

    Article  PubMed  CAS  Google Scholar 

  6. Shen, Y., Leatherbury, L., Rosenthal, J., et al. (2005) Cardiovascular phenotyping of fetal mice by noninvasive high-frequency ultrasound facilitates recovery of ENUinduced mutations causing congenital cardiac and extracardiac defects. Physiol. Genomics 24, 23–36.

    Article  PubMed  Google Scholar 

  7. Streicher, J., Weninger, W. J., and Muller, G. B. (1997) External marker-based automatic congruencing: a new method of 3D reconstruction from serial sections. Anat. Rec. 248, 583–602.

    Article  PubMed  CAS  Google Scholar 

  8. Schierlitz, L., Dumanli, H., Robinson, J. N., et al. (2001) Three-dimensional magnetic resonance imaging of fetal brains. Lancet 357, 1177–1178.

    Article  PubMed  CAS  Google Scholar 

  9. Ruijter, J. M., Soufan, A. T., Hagoort, J., and Moorman, A. F. (2004) Molecular imaging of the embryonic heart: fables and facts on 3D imaging of gene expression patterns. Birth Defects Res. C Embryo Today 72, 224–240.

    Article  PubMed  CAS  Google Scholar 

  10. Soufan, A. T., Ruijter, J. M., van den Hoff, M. J., de Boer, P. A., Hagoort, J., and Moorman, A. F. (2003) Three-dimensional reconstruction of gene expression patterns during cardiac development. Physiol. Genomics 13, 187–195.

    PubMed  CAS  Google Scholar 

  11. Weninger, W. J., Streicher, J., and Müller, G. B. (1996) [3-Dimensional reconstruction of histological serial sections using a computer]. Wien Klin. Wochenschr. 108, 515–520.

    PubMed  CAS  Google Scholar 

  12. Kaufman, M. H. and Richardson, L. (2005) 3D reconstruction of the vessels that enter the right atrium of the mouse heart at Theiler stage 20. Clin. Anat. 18, 27–38.

    Article  PubMed  CAS  Google Scholar 

  13. Louie, A. Y., Huber, M. M., Ahrens, E. T., et al. (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18, 321–325.

    Article  PubMed  CAS  Google Scholar 

  14. Ewald, A. J., McBride, H., Reddington, M., Fraser, S. E., and Kerschmann, R. (2002) Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev. Dyn. 225, 369–375.

    Article  PubMed  Google Scholar 

  15. Weninger, W. J., Meng, S., Streicher, J., and Müller, G. B. (1998) Anew episcopic method for rapid 3-D reconstruction: applications in anatomy and embryology. Anat. Embryol. (Berl.) 197, 341–348.

    Article  CAS  Google Scholar 

  16. Weninger, W. J. and Mohun, T. (2002) Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing. Nat. Genet. 30, 59–65.

    Article  PubMed  CAS  Google Scholar 

  17. Weninger, W. J., Geyer, S. H., Mohun, T. J., et al. (2006) High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology. Anat. Embryol. (Berl.) 211, 213–221.

    Article  Google Scholar 

  18. Kerwin, J., Scott, M., Sharpe, J., et al. (2004) 3-Dimensional modelling of early human brain development using optical projection tomography. BMC Neurosci. 5, 27.

    Article  PubMed  Google Scholar 

  19. Rosenthal, J., Mangal, V., Walker, D., Bennett, M., Mohun, T. J., and Lo, C. W. (2004) Rapid high resolution three dimensional reconstruction of embryos with episcopic fluorescence image capture. Birth Defects Res. C Embryo Today 72, 213–223.

    Article  PubMed  CAS  Google Scholar 

  20. Chen, H. W., Yu, S. L., Chen, W. J., etal. (2004) Dynamic changes of gene expression profiles during postnatal development of the heart in mice. Heart 90, 927–934.

    Article  PubMed  CAS  Google Scholar 

  21. Kaynak, B., von Heydebreck, A., Mebus, S., et al. (2003) Genome-wide array analysis of normal and malformed human hearts. Circulation 107, 2467–2474.

    Article  PubMed  Google Scholar 

  22. Balza, R. O. Jr. and Misra, R. P. (2005) The role of serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. J. Biol. Chem. 281, 6498–6510.

    Article  PubMed  Google Scholar 

  23. Napoli, C., Lerman, L. O., Sica, V., Lerman, A., Tajana, G., and deNigris, F. (2003) Microarray analysis: a novel research tool for cardiovascular scientists and physicians. Heart 89, 597–604.

    Article  PubMed  CAS  Google Scholar 

  24. Alvarez, E., Zhou, W., Witta, S. E., and Freed, C. R. (2005) Characterization of the Bex gene family in humans, mice, and rats. Gene 357, 18–28.

    Article  PubMed  CAS  Google Scholar 

  25. Wilkinson, D. G. (1998) In Situ Hybridisation: A Practical Approach. Oxford University Press, Oxford.

    Google Scholar 

  26. Streit, A. and Stern, C.D. (2001) Combined whole-mount in situ hybridization and immunohistochemistry in avian embryos. Methods 23, 339–344.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Weninger, W.J., Mohun, T.J. (2007). Three-Dimensional Analysis of Molecular Signals with Episcopic Imaging Techniques. In: Anson, D.S. (eds) Reporter Genes. Methods in Molecular Biology, vol 411. Humana Press. https://doi.org/10.1007/978-1-59745-549-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-549-7_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-739-6

  • Online ISBN: 978-1-59745-549-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics