Skip to main content

Bacteriophage Plaques: Theory and Analysis

  • Protocol
Book cover Bacteriophages

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 501))

Abstract

Laboratory characterization of bacteriophage growth traditionally is done either in broth cultures or in semisolid agar media. These two environments may be distinguished in terms of their spatial structure, i.e., the degree to which they limit diffusion, motility, and environmental mixing. Well-mixed broth, for example, represents the microbiological ideal of a non-spatially structured environment. Agar, by contrast, imposes significant limitations on phage and bacterial movement and therefore gives rise to spatial structure.

The study of phage growth within spatially structured environments, such as that seen during phage plaque formation, is important for three reasons. First, a large fraction of environmental bacteria live within spatially structured environments such as within biofilms, within soil, or when growing in or on the tissues of plants and animals. Second, phage growth as plaques is a central technique to phage studies, yet appears to be under appreciated by phage workers in terms of its complexity. Third, selective pressures acting on phage during plaque growth differ from those seen during broth growth.

In this chapter we will discuss just what a plaque is, how one forms, and what can affect plaque size. We will describe methods, both experimental and theoretical, that have been employed to study plaque growth. As caveats we will discuss why plaque formation failure is not necessarily equivalent to virion inviability (Note 1). We also will consider problems with inferring phage broth growth fitness as a function of plaque characteristics (Note 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedon, S.T. (2006) Phage ecology, in The Bacteriophages (Calendar, R. and Abedon, S T eds.), Oxford University Press, Oxford, pp. 37–46.

    Google Scholar 

  2. Abedon, S.T. and Yin, J. (2008) Impact of spatial structure on phage population growth, in Bacteriophage Ecology (Abedon, S.T. ed.), Cambridge University Press, Cambridge, UK, pp. 94–113.

    Chapter  Google Scholar 

  3. Alvarez, L.J., Thomen, P., Makushok, T. and Chatenay, D. (2007) Propagation of fluorescent viruses in growing plaques. Biotech. Bioeng. 96, 615–621.

    Article  CAS  Google Scholar 

  4. Mayr-Harting, A. (1958) Die Entwicklung von Phagenloechern und der mechanismus der Phagenwirkung in festen Naehrboeden. Zbl. f. Bakt. Paras. Infek. u. Hyg. 171, 380–392.

    CAS  Google Scholar 

  5. Koch, A.L. (1964) The growth of viral plaques during the enlargement phase. J. Theor. Biol. 6, 413–431.

    Article  CAS  PubMed  Google Scholar 

  6. Kaplan, D.A., Naumovski, L., Rothschild, B. and Collier, R.J. (1981) Appendix: a model of plaque formation. Gene 13, 221–225.

    Article  CAS  PubMed  Google Scholar 

  7. Yin, J. (1991) A quantifiable phenotype of viral propagation. Biochem. Biophys. Res. Com. 174, 1009–1014.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, Y. and Yin, J. (1996) Detection of evolving viruses. Nat. Biotech. 14, 491–493.

    Article  CAS  Google Scholar 

  9. Lee, Y. and Yin, J. (1996) Imaging the propagation of viruses. Biotech. Bioeng. 52, 438–442.

    Article  CAS  Google Scholar 

  10. Yin, J. (1993) Evolution of bacteriophage T7 in a growing plaque. J. Bacteriol. 175, 1272–1277.

    CAS  PubMed  Google Scholar 

  11. Yin, J. (1994) Spatially resolved evolution of viruses. Ann. N. Y. Acad. Sci. 745, 399–408.

    Article  CAS  PubMed  Google Scholar 

  12. Hershey, A.D. (1946) Spontaneous mutations in bacterial viruses. Cold Spring Harbor Symp. Quant. Biol. 11, 67–77.

    Google Scholar 

  13. Doermann, A.H., Carolyn, F.-R. and Dissosway, C. (1949) Intracellular growth and genetics of bacteriophage. Year Book Carnegie Inst. Wash. 48, 170–176.

    Google Scholar 

  14. Krone, S.M. and Abedon, S.T. (2008) Modeling phage plaque growth, in Bacteriophage Ecology (Abedon, S.T. ed.), Cambridge University Press, Cambridge, UK, pp. 415–438.

    Google Scholar 

  15. Qanber, A.A. and Douglas, J. (1976) Enhancement of plaque size of a staphylococcal phage. J. Appl. Bacteriol. 40, 109–110.

    Google Scholar 

  16. McConnell, M. and Wright, A. (1975) An anaerobic technique for increasing bacteriophage plaque size. Virology 65, 588–590.

    Article  CAS  PubMed  Google Scholar 

  17. Carlson, K. and Miller, E.S. (1994) Enumerating phage: the plaque assay, in Molecular Biology of Bacteriophage T4 (Karam, J.D. ed.), ASM Press, Washington, DC, pp. 427–429.

    Google Scholar 

  18. Lillehaug, D. (1997) An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages. J. Appl. Microbiol. 83, 85–90.

    Article  CAS  PubMed  Google Scholar 

  19. Adams, M.H. (1959). Bacteriophages. Interscience, New York.

    Google Scholar 

  20. Abedon, S.T., Herschler, T.D. and Stopar, D. (2001) Bacteriophage latent-period evolution as a response to resource availability. Appl. Environ. Microbiol. 67, 4233–4241.

    Article  CAS  PubMed  Google Scholar 

  21. Elford, W.J. and Andrews, C.H. (1932) The sizes of different bacteriophages. Brit. J. Exp. Path. 13, 446–456S.

    Google Scholar 

  22. Bronfenbrenner, J.J. and Korb, C. (1925) Studies on the bacteriophage of d’Herelle. III. Some of the factors determining the number and size of plaques of bacterial lysis on agar. J. Exp. Med. 42, 483–497.

    Article  CAS  PubMed  Google Scholar 

  23. Schnitzlein, C.F., Albrecht, I. and Drake, J.W. (1974) Is bacteriophage T4 DNA polymerase involved in the repair of ultraviolet damage? Virology 59, 580–583.

    Article  CAS  PubMed  Google Scholar 

  24. Conkling, M.A. and Drake, J.W. (1984) Isolation and characterization of conditional alleles of bacteriophage T4. Genetics 107, 505–523.

    CAS  PubMed  Google Scholar 

  25. Abedon, S.T., Hyman, P. and Thomas, C. (2003) Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl. Environ. Microbiol. 69, 7499–7506.

    Article  CAS  PubMed  Google Scholar 

  26. Abedon, S.T. and Culler, R.R. (2007) Bacteriophage evolution given spatial constraint. J. Theor. Biol. 248, 111–119.

    Article  PubMed  Google Scholar 

  27. Abedon, S.T. and Culler, R.R. (2007) Optimizing bacteriophage plaque fecundity. J. Theor. Biol. 249, 582–592.

    Article  CAS  PubMed  Google Scholar 

  28. You, L. and Yin, J. (1999) Amplification and spread of viruses in a growing plaque. J. Theor. Biol. 200, 365–373.

    Article  CAS  PubMed  Google Scholar 

  29. Carlson, K. and Miller, E.S. (1994) Enumerating phage, in Molecular Biology of Bacteriophage T4 (Karam, J.D. ed.), ASM Press, Washington, DC, pp. 427–429.

    Google Scholar 

  30. Lee, Y., Eisner, S.D. and Yin, J. (1997) Antiserum inhibition of propagating viruses. Biotech. Bioeng. 55, 542–546.

    Article  CAS  Google Scholar 

  31. Hershey, A.D., Kalmanson, G.M. and Bronfenbrenner, J.J. (1944) Coordinate effects of electrolyte and antibody on the infectivity of bacteriophage. J. Immunol. 48, 221–239.

    CAS  Google Scholar 

  32. Dennehy, J.J., Abedon, S.T. and Turner, P.E. (2007) Host density impacts relative fitness of bacteriophage \(\phi\)6 genotypes in structured habitats. Evolution 61, 2516–2527.

    Article  PubMed  Google Scholar 

  33. Burch, C.L. and Chao, L. (2004) Epistasis and Its relationship to canalization in the RNA virus \(\phi\)6. Genetics 167, 559–567.

    Article  PubMed  Google Scholar 

  34. Hadas, H., Einav, M., Fishov, I. and Zaritsky, A. (1997) Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143, 179–185.

    Article  CAS  PubMed  Google Scholar 

  35. Eisenstark, A. (1967) Bacteriophage techniques. Meth. Virol. 1, 449–524.

    Google Scholar 

  36. Hershey, A.D., Kalmanson, G. and Bronfenbrenner, J.J. (1943) Quantitative methods in the study of the phage-antibody reaction. J. Immunol. 46, 267–279.

    CAS  Google Scholar 

  37. Yin, J. and McCaskill, J.S. (1992) Replication of viruses in a growing plaque: A reaction-diffusion model. Biophys. J. 61, 1540–1549.

    Article  CAS  PubMed  Google Scholar 

  38. Fort, J. and MĂ©ndez, V. (2002) Time-delayed spread of viruses in growing plaques. Phys. Rev. Lett. 89, 178101.

    Article  PubMed  Google Scholar 

  39. Ortega-Cejas, V., Fort, J., MĂ©ndez, V. and Campos, D. (2004) Approximate solution to the speed of spreading viruses. Phys. Rev. E 69, 031909-1-031909-4.

    Article  Google Scholar 

  40. Fort, J., PĂ©rez, J., Ubeda, E. and GarcĂ­a, F.J. (2006) Fronts with continuous waiting-time distributions: Theory and application to virus infections. Phys. Rev. E 73, 021907-1-021907-8.

    Article  Google Scholar 

  41. Stent, G.S. (1963). Molecular Biology of Bacterial Viruses. WH Freeman and Co., San Francisco, CA.

    Google Scholar 

  42. Carlson, K. (2005) Working with bacteriophages: common techniques and methodological approaches, in (Kutter, E. and Sulakvelidze, A eds.), CRC Press, Boca Raton, Florida, pp. 437–494.

    Google Scholar 

  43. d’Hérelle, F. (1922). The Bacteriophage: Its Role in Immunity. Williams and Wilkins Co./Waverly Press, Baltimore.

    Google Scholar 

  44. Goodridge, L. and Abedon, S.T. (2003) Bacteriophage biocontrol and bioprocessing: application of phage therapy to industry. SIM News 53, 254–262.

    Google Scholar 

  45. Stopar, D. and Abedon, S.T. (2008) Modeling bacteriophage population growth, in Bacteriophage Ecology (Abedon, S.T. ed.), Bacteriophage Ecology, Cambridge University Press, Cambridge, UK, pp. 389–414.

    Google Scholar 

  46. Breitbart, M., Rohwer, F. and Abedon, S.T. (2005) Phage ecology and bacterial pathogenesis, in Phages: Their Role in Bacterial Pathogenesis and Biotechnology (Waldor, M.K., Friedman, D I and Adhya, S L eds.), ASM Press, Washington DC, pp. 66–91.

    Google Scholar 

  47. Bull, J.J., Millstein, J., Orcutt, J. and Wichman, H.A. (2006) Evolutionary feedback mediated through population density, illustrated with viruses in chemostats. Am. Nat. 167, E39–E51.

    Article  CAS  PubMed  Google Scholar 

  48. Abedon, S.T. (1990) Selection for lysis inhibition in bacteriophage. J. Theor. Biol. 146, 501–511.

    Article  CAS  PubMed  Google Scholar 

  49. Hershey, A.D. (1946) Mutation of bacteriophage with respect to type of plaque. Genetics 31, 620–640.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Abedon, S.T., Yin, J. (2009). Bacteriophage Plaques: Theory and Analysis. In: Clokie, M.R., Kropinski, A.M. (eds) Bacteriophages. Methods in Molecular Biology™, vol 501. Humana Press. https://doi.org/10.1007/978-1-60327-164-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-164-6_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-682-5

  • Online ISBN: 978-1-60327-164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics