Skip to main content

Protein Secondary Structure Prediction

  • Protocol
  • First Online:
Book cover Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 609))

Abstract

While the prediction of a native protein structure from sequence continues to remain a challenging problem, over the past decades computational methods have become quite successful in exploiting the mechanisms behind secondary structure formation. The great effort expended in this area has resulted in the development of a vast number of secondary structure prediction methods. Especially the combination of well-optimized/sensitive machine-learning algorithms and inclusion of homologous sequence information has led to increased prediction accuracies of up to 80%. In this chapter, we will first introduce some basic notions and provide a brief history of secondary structure prediction advances. Then a comprehensive overview of state-of-the-art prediction methods will be given. Finally, we will discuss open questions and challenges in this field and provide some practical recommendations for the user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pauling, L., Corey R. B., Branson, H. R. (1951) The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37, 205–211.

    Article  CAS  PubMed  Google Scholar 

  2. Pauling, L., Corey, R. B. (1951) Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. Proc Natl Acad Sci USA 37, 729–740.

    Article  CAS  PubMed  Google Scholar 

  3. Goldenberg, D. P., Frieden, R. W., Haack, J. A., Morrison, T. B. (1989) Mutational analysis of a protein-folding pathway. Nature 338, 127–132.

    Article  CAS  PubMed  Google Scholar 

  4. Berman, H. M., et al. (2000) The protein data bBank. Nucl Acids Res 28, 235–242.

    Article  CAS  PubMed  Google Scholar 

  5. Russell, R. B., Copley, R. R., Barton, G. J. (1996) Protein fold recognition by mapping predicted secondary structures. J Mol Biol 259, 349–365.

    Article  CAS  PubMed  Google Scholar 

  6. Rost, B., Schneider, R., Sander, C. (1997) Protein fold recognition by prediction-based threading. J Mol Biol 270, 471–480.

    Article  CAS  PubMed  Google Scholar 

  7. Koretke, K. K., Russell, R. B., Copley, R. R., Lupas, A. N. (1999) Fold recognition using sequence and secondary structure information. Proteins Suppl 3, 141–148.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, H., Zhou, Y. (2004) Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins 55, 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  9. Jones, D. T. (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287, 797–815.

    Article  CAS  PubMed  Google Scholar 

  10. Skolnick, J., Kolinski, A., Ortiz, A. R. (1997) MONSSTER: a method for folding globular proteins with a small number of distance restraints. J Mol Biol 265, 217–241.

    Article  CAS  PubMed  Google Scholar 

  11. Hargbo, J., Elofsson, A. (1999) Hidden Markov models that use predicted secondary structures for fold recognition. Proteins 36, 68–76.

    Article  CAS  PubMed  Google Scholar 

  12. Soding, J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960.

    Article  PubMed  Google Scholar 

  13. Simossis, V. A., Heringa, J. (2005) PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucl Acids Res 33, W289–W294.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, H., Zhou, Y. (2005) SPEM: improving multiple sequence alignment with sequence profiles and predicted secondary structures. Bioinformatics 21, 3615–3621.

    Article  CAS  PubMed  Google Scholar 

  15. Ward, J. J., et al. (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337, 635–645.

    Article  CAS  PubMed  Google Scholar 

  16. Richardson, J. S., Getzoff, E. D., Richardson, D. C. (1978) The beta bulge: a common small unit of nonrepetitive protein structure. Proc Natl Acad Sci USA 75, 2574–2578.

    Article  CAS  PubMed  Google Scholar 

  17. Chan, A. W., Hutchinson, E. G., Harris, D., Thornton, J. M. (1993) Identification, classification, and analysis of beta-bulges in proteins. Protein Sci 2, 1574–1590.

    Article  CAS  PubMed  Google Scholar 

  18. Kabsch, W., Sander, C. (1983) How good are predictions of protein secondary structure? FEBS Lett 155, 179–182.

    Article  CAS  PubMed  Google Scholar 

  19. Nagano, K. (1973) Logical analysis of the mechanism of protein folding. I. Predictions of helices, loops and beta-structures from primary structure. J Mol Biol 75, 401–420.

    Article  CAS  PubMed  Google Scholar 

  20. Chou, P. Y., Fasman, G. D. (1974) Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13, 211–222.

    Article  CAS  PubMed  Google Scholar 

  21. Lim, V. I. (1974) Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure. J Mol Biol 88, 857–872.

    Article  CAS  PubMed  Google Scholar 

  22. Schulz, G. E. (1988) A critical evaluation of methods for prediction of protein secondary structures. Ann Rev Biophys Biophys Chem 17, 1–21.

    Article  CAS  Google Scholar 

  23. Garnier, J., Osguthorpe, D. J., Robson, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120, 97–120.

    Article  CAS  PubMed  Google Scholar 

  24. Garnier, J., Gibrat, J. F., Robson, B. (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266, 540–553.

    Article  CAS  PubMed  Google Scholar 

  25. Zvelebil, M. J., Barton, G. J., Taylor, W. R., Sternberg, M. J. (1987) Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J Mol Biol 195, 957–961.

    Article  CAS  PubMed  Google Scholar 

  26. Levin, J. M., Pascarella, S,, Argos, P., Garnier, J. (1993) Quantification of secondary structure prediction improvement using multiple alignments. Protein Eng 6, 849–854.

    Article  CAS  PubMed  Google Scholar 

  27. Rost, B., Sander, C. (1993) Prediction of protein secondary structure at better than 70-percent accuracy. J Mol Biol 232, 584–599.

    Article  CAS  PubMed  Google Scholar 

  28. Qian, N., Sejnowski, T. J. (1988) Predicting the secondary structure of globular-proteins using Neural Network Models. J Mol Biol 202, 865–884.

    Article  CAS  PubMed  Google Scholar 

  29. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986) Learning representations by back-propagating errors. Nature 323, 533–536.

    Article  Google Scholar 

  30. Minsky, M., Papert, S. (1988) Perceptrons. MIT Press, Cambridge, MA, USA.

    Google Scholar 

  31. Altschul, S. F., et al. (1990) Basic local alignment search tool. J Mol Biol 215, 403–410.

    CAS  PubMed  Google Scholar 

  32. Bairoch, A., Boeckmann, B. (1991) The SWISS-PROT protein sequence data bank. Nucl Acids Res 19(Suppl), 2247–2249.

    CAS  PubMed  Google Scholar 

  33. Sander, C., Schneider, R. (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9, 56–68.

    Article  CAS  PubMed  Google Scholar 

  34. Przybylski, D., Rost, B. (2002) Alignments grow, secondary structure prediction improves. Proteins 46, 197–205.

    Article  CAS  PubMed  Google Scholar 

  35. Altschul, S. F., Koonin, E. V. (1998) Iterated profile searches with PSI-BLAST – a tool for discovery in protein databases. Trends Biochem Sci 23, 444–447.

    Article  CAS  PubMed  Google Scholar 

  36. Altschul, S. F., et al. (1997) Gapped BLAST and PSI-BLAST, a new generation of protein database search programs. Nucl Acids Res 25, 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  37. Jones, D. T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195–202.

    Article  CAS  PubMed  Google Scholar 

  38. Ouali, M., King, R. D. (2000) Cascaded multiple classifiers for secondary structure prediction. Protein Sci 9, 1162–1176.

    Article  CAS  PubMed  Google Scholar 

  39. Baldi, P., et al. (1999) Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15, 937–946.

    Article  CAS  PubMed  Google Scholar 

  40. Pollastri, G., Przybylski, D., Rost, B., Baldi, P. (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47, 228–235.

    Article  CAS  PubMed  Google Scholar 

  41. Pollastri, G., McLysaght, A. (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21, 1719–1720.

    Article  CAS  PubMed  Google Scholar 

  42. Raghava, G. P. S. (2000) in CASP 4, pp. 75–76.

    Google Scholar 

  43. Raghava, G. P. S. (2002) in CASP 5, p. 132.

    Google Scholar 

  44. Raghava, G. P. S. (2002) in CASP 5, p. 133.

    Google Scholar 

  45. Eddy, S. R. (1998) Profile hidden Markov models. Bioinformatics 14, 755–763.

    Article  CAS  PubMed  Google Scholar 

  46. Karplus, K., Barrett, C., Hughey, R. (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14, 846–856.

    Article  CAS  PubMed  Google Scholar 

  47. Karplus, K., et al. (1999) Predicting protein structure using only sequence information. Proteins Suppl 3, 121–125.

    Article  CAS  PubMed  Google Scholar 

  48. Karplus, K., et al. (2003) Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins 53(Suppl 6), 491–496.

    Article  CAS  PubMed  Google Scholar 

  49. Shackelford, G., Karplus, K. (2007) Contact prediction using mutual information and neural nets. Proteins 69(Suppl 8), 159–164.

    Article  CAS  PubMed  Google Scholar 

  50. Lin, K., Simossis, V. A., Taylor, W. R., Heringa, J. (2005) A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21, 152–159.

    Article  CAS  PubMed  Google Scholar 

  51. Cuff, J. A., et al. (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14, 892–893.

    Article  CAS  PubMed  Google Scholar 

  52. Thompson, J. D., et al. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25, 4876–4882.

    Article  CAS  PubMed  Google Scholar 

  53. Rost, B. (1996) PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266, 525–539.

    Article  CAS  PubMed  Google Scholar 

  54. Frishman, D., Argos, P. (1997) Seventy-five percent accuracy in protein secondary structure prediction. Proteins 27, 329–335.

    Article  CAS  PubMed  Google Scholar 

  55. Salamov, A. A., Solovyev, V. V. (1995) Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol 247, 11–15.

    Article  CAS  PubMed  Google Scholar 

  56. Cuff, J. A., Barton, G. J. (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40, 502–511.

    Article  CAS  PubMed  Google Scholar 

  57. Cole, C., Barber, J. D., Barton, G. J. (2009) The Jpred 3 secondary structure prediction server. Nucl Acids Res 36, W197–W201.

    Article  CAS  PubMed  Google Scholar 

  58. Kabsch, W., Sander C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

    Article  CAS  PubMed  Google Scholar 

  59. Andersen, C. A., Palmer, A. G., Brunak, S., Rost, B. (2002) Continuum secondary structure captures protein flexibility. Structure 10, 175–184.

    Article  CAS  PubMed  Google Scholar 

  60. Heinig, M., Frishman, D. (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucl Acids Res 32, W500–W502.

    Article  CAS  PubMed  Google Scholar 

  61. Moult, J., et al. (2007) Critical assessment of methods of protein structure prediction-Round VII. Proteins 69(Suppl 8), 3–9.

    Article  CAS  PubMed  Google Scholar 

  62. Koh, I. Y., et al. (2003) EVA: evaluation of protein structure prediction servers. Nucl Acids Res 31, 3311–3315.

    Article  CAS  PubMed  Google Scholar 

  63. Tusnady, G. E., Dosztanyi, Z., Simon, I. (2005) PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucl Acids Res 33, D275–D278.

    Article  CAS  PubMed  Google Scholar 

  64. Wallin, E., von Heijne, G. (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7, 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  65. Tusnady, G. E., Simon, I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849–850.

    Article  CAS  PubMed  Google Scholar 

  66. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567–580.

    Article  CAS  PubMed  Google Scholar 

  67. Kall, L., Krogh, A., Sonnhammer, E. L. (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  68. Kall, L., Krogh, A., Sonnhammer, E. L. (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(Suppl 1), i251–i257.

    Article  PubMed  Google Scholar 

  69. Jones, D. T. (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23, 538–544.

    Article  CAS  PubMed  Google Scholar 

  70. Natt, N. K., Kaur, H., Raghava, G. P. (2004) Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods. Proteins 56, 11–18.

    Article  CAS  PubMed  Google Scholar 

  71. Simossis, V. A., Kleinjung, J., Heringa, J. (2005) Homology-extended sequence alignment. Nucl Acids Res 33, 816–824.

    Article  CAS  PubMed  Google Scholar 

  72. Pirovano, W., Feenstra, K. A., Heringa, J. (2008) PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 24, 492–497.

    Article  CAS  PubMed  Google Scholar 

  73. Pei, J., Grishin, N. V. (2007) PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 23, 802–808.

    Article  CAS  PubMed  Google Scholar 

  74. Eisenberg, D., Schwarz, E., Komaromy, M., Wall, R. (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179, 125–142.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pirovano, W., Heringa, J. (2010). Protein Secondary Structure Prediction. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 609. Humana Press. https://doi.org/10.1007/978-1-60327-241-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-241-4_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-240-7

  • Online ISBN: 978-1-60327-241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics