Skip to main content

Quantitative Analysis of Small Molecule–Nucleic Acid Interactions with a Biosensor Surface and Surface Plasmon Resonance Detection

  • Protocol
  • First Online:
Book cover Drug-DNA Interaction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 613))

Abstract

Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charbonnier S, Gallego O, Gavin AC (2008) The social network of a cell: recent advances in interactome mapping. Biotechnol Annu Rev 14:1-28

    Article  CAS  PubMed  Google Scholar 

  2. Figeys D (2008) Mapping the human protein interactome. Cell Res 18:716-724

    Article  CAS  PubMed  Google Scholar 

  3. Reed JW, Bartel B (2008) Cell signaling and gene regulation. Curr Opin Plant Biol 11:471-473

    Article  PubMed  Google Scholar 

  4. Kornberg R (2007) The molecular basis of eukaryotic transcription. Angew Chem Int Ed Engl 46:6956-6965

    Article  CAS  PubMed  Google Scholar 

  5. Majmudar CY, Lum JK, Prasov L, Mapp AK (2005) Functional specificity of artificial transcriptional activators. Chem Biol 12:313-321

    Article  CAS  PubMed  Google Scholar 

  6. Berg T (2008) Inhibition of transcription factors with small organic molecules. Curr Opin Chem Biol 12:464-471

    Article  CAS  PubMed  Google Scholar 

  7. Xiao X, Yu P, Lim HS, Sikder D, Kodadek T (2007) Design and synthesis of a cell-permeable synthetic transcription factor mimic. J Comb Chem 9:592-600

    Article  CAS  PubMed  Google Scholar 

  8. Burnett R, Melander C, Puckett JW, Son LS, Wells RD, Dervan PB et al (2006) DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich’s ataxia. Proc Natl Acad Sci U S A 103:11497-11502

    Article  CAS  PubMed  Google Scholar 

  9. Wilson WD, Tanious FA, Mathis A, Tevis D, Hall JE, Boykin DW (2008) Antiparasitic compounds that target DNA. Biochimie 90:999-1014

    Article  CAS  PubMed  Google Scholar 

  10. Tidwell RR, Boykin DW (2003) Dicationic DNA minor-groove binders as antimicrobial agents. In: Demeunynck M, Bailly C, Wilson WD (eds) DNA and RNA binders: from small molecules to drugs. Wiley-VCH, pp 414-460

    Google Scholar 

  11. Cai Z, Greene MI, Berezov A (2008) Modulation of biomolecular interactions with complex-binding small molecules. Methods 36:39-46

    Article  CAS  Google Scholar 

  12. Dominy BN (2008) Molecular recognition and binding free energy calculations in drug development. Curr Pharm Biotechnol 9:87-95

    Article  CAS  PubMed  Google Scholar 

  13. Seiler KP, George GA, Happ MP, Bodycombe NE, Carrinski HA, Norton S et al (2008) ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res 36:351-359

    Article  Google Scholar 

  14. Butcher RA, Schreiber SL (2005) Using genome-wide transcriptional profiling to elucidate small-molecule mechanism. Curr Opin Chem Biol 9:25-30

    Article  CAS  PubMed  Google Scholar 

  15. Mapp AK, Ansari AZ (2007) A TAD further: exogenous control of gene activation. ACS Chem Biol 2:62-75

    Article  CAS  PubMed  Google Scholar 

  16. Chaires JB (2008) Calorimetry and thermodynamics in drug design. Annu Rev Biophys 37:135-151

    Article  CAS  PubMed  Google Scholar 

  17. Papalia GA, Giannetti AM, Arora N, Myszka DG (2008) Thermodynamic characterization of pyrazole and azaindole derivatives binding to p38 mitogen-activated protein kinase using Biacore T100 technology and van’t Hoff analysis. Anal Biochem 383:255-264

    Article  CAS  PubMed  Google Scholar 

  18. Perozzo R, Folkers G, Scapozza L (2004) Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J Recept Signal Transduct Res 24:1-52

    Article  CAS  PubMed  Google Scholar 

  19. Velazquez Campoy A, Freire E (2005) ITC in the post-genomic era...? Priceless. Biophys Chem 115:115-124

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Dantzer JJ, Nowacki J, O’Callaghan BJ, Meroueh SO (2008) PDBcal: a comprehensive dataset for receptor-ligand interactions with three-dimensional structures and binding thermodynamics from isothermal titration calorimetry. Chem Biol Drug Des 71:529-532

    Article  CAS  PubMed  Google Scholar 

  21. Privalov PL, Dragan AI (2007) Microcalorimetry of biological macromolecules. Biophys Chem 126:16-24

    Article  CAS  PubMed  Google Scholar 

  22. Plotnikov VV, Brandts JM, Lin LN, Brandts JF (1997) A new ultrasensitive scanning calorimeter. Anal Biochem 250:237-244

    Article  CAS  PubMed  Google Scholar 

  23. Ciulli A, Williams G, Smith AG, Blundell TL, Abell C (2006) Probing hot spots at protein-ligand binding sites: a fragment-based approach using biophysical methods. J Med Chem 49:4992-5000

    Article  CAS  PubMed  Google Scholar 

  24. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859-14866

    Article  CAS  PubMed  Google Scholar 

  25. Wilson WD (2002) Analyzing biomolecular interactions. Science 295:2103-2105

    Article  CAS  PubMed  Google Scholar 

  26. Rich RL, Myszka DG (2007) Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 20:300-366

    Article  CAS  PubMed  Google Scholar 

  27. Myszka DG (2000) Kinetic, equilibrium, and thermodynamic analysis of macromolecular interactions with BIACORE. Methods Enzymol 323:325-340

    Article  CAS  PubMed  Google Scholar 

  28. Nagata K, Handa H. (2000) Real-time analysis of biomolecular interactions: applications of Biacore. Springer

    Google Scholar 

  29. Nguyen B, Tanious FA, Wilson WD (2007) Biosensor-surface plasmon resonance: quantitative analysis of small molecule-nucleic acid interactions. Methods 42:150-161

    Article  CAS  PubMed  Google Scholar 

  30. Jason-Moller L, Murphy M, Bruno J (2006) Overview of Biacore systems and their applications. Curr Protoc Protein Sci Chapter 19. doi:10.1002/0471140864

    Google Scholar 

  31. Davis TM, Wilson WD (2000) Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data. Anal Biochem 284:348-353

    Article  CAS  PubMed  Google Scholar 

  32. Davis TM, Wilson WD (2001) Surface plasmon resonance biosensor analysis of RNA-small molecule interactions. Methods Enzymol 340:22-51

    Article  CAS  PubMed  Google Scholar 

  33. Koh JT, Zheng J (2007) The new biomimetic chemistry: artificial transcription factors. ACS Chem Biol 2:599-601

    Article  CAS  PubMed  Google Scholar 

  34. Rezler EM, Bearss DJ, Hurley LH (2003) Telomere inhibition and telomere disruption as processes for drug targeting. Annu Rev Pharmacol Toxicol 43:359-379

    Article  CAS  PubMed  Google Scholar 

  35. Neidle S, Parkinson GN (2008) Quadruplex DNA crystal structures and drug design. Biochimie 90:1184-1196

    Article  CAS  PubMed  Google Scholar 

  36. Hampshire AJ, Fox KR (2008) The effects of local DNA sequence on the interaction of ligands with their preferred binding sites. Biochimie 90:988-998

    Article  CAS  PubMed  Google Scholar 

  37. Chaires JB (2005) Competition dialysis: an assay to measure the structural selectivity of drug-nucleic acid interactions. Curr Med Chem Anticancer Agents 5:339-352

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen B, Neidle S, Wilson WD (2009) A role for water molecules in DNA-ligand minor groove recognition. Acc Chem Res. 42:11-21

    Google Scholar 

  39. Wilson WD, Nguyen B, Tanious FA, Mathis A, Hall JE, Stephens CE et al (2005) Dications that target the DNA minor groove: compound design and preparation, DNA interactions, cellular distribution and biological activity. Curr Med Chem Anticancer Agents 5:389-408

    Article  CAS  PubMed  Google Scholar 

  40. Werbovetz K (2006) Diamidines as antitrypanosomal, antileishmanial and antimalarial agents. Curr Opin Investig Drugs 7:147-157

    CAS  PubMed  Google Scholar 

  41. De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF et al (2008) Targeting telomeres and telomerase. Biochimie 90:131-155

    Article  PubMed  Google Scholar 

  42. White EW, Tanious F, Ismail MA, Reszka AP, Neidle S, Boykin DW et al (2007) Structure-specific recognition of quadruplex DNA by organic cations: influence of shape, substituents and charge. Biophys Chem 126:140-153

    Article  CAS  PubMed  Google Scholar 

  43. Parkinson GN, Cuenca F, Neidle S (2008) Topology conservation and loop flexibility in quadruplex-drug recognition: crystal structures of inter- and intramolecular telomeric DNA quadruplex-drug complexes. J Mol Biol 381:1145-1156

    Article  CAS  PubMed  Google Scholar 

  44. Huppert JL (2008) Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev 37:1375-1384

    Article  CAS  PubMed  Google Scholar 

  45. Qin Y, Hurley LH (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90:1149-1171

    Article  CAS  PubMed  Google Scholar 

  46. Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36:5482-5515

    Article  CAS  PubMed  Google Scholar 

  47. Tanious FA, Nguyen B, Wilson WD (2008) Biosensor-surface plasmon resonance methods for quantitative analysis of biomolecular interactions. Methods Cell Biol 84:53-77

    Article  CAS  PubMed  Google Scholar 

  48. Karlsson R (1999) Affinity analysis of non-steady-state data obtained under mass transport limited conditions using BIAcore technology. J Mol Recognit 12:285-292

    Article  CAS  PubMed  Google Scholar 

  49. Navratilova I, Dioszegi M, Myszka DG (2006) Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology. Anal Biochem 355:132-139

    Article  CAS  PubMed  Google Scholar 

  50. Day YS, Baird CL, Rich RL, Myszka DG (2002) Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. Protein Sci 11:1017-1025

    Article  CAS  PubMed  Google Scholar 

  51. Cooper MA, Hansson A, Lofas S, Williams DH (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal Biochem 277:196-205

    Article  CAS  PubMed  Google Scholar 

  52. Peixoto P, Liu Y, Depauw S, Hildebrand MP, Boykin DW, Bailly C et al (2008) Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication. Nucleic Acids Res 36:3341-3353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We very much thank the NIH for funding the research that has made this review possible and the Georgia Research Alliance for funding of Biacore instruments. We also very much thank Professor David W. Boykin and his coworkers (Georgia State University, Atlanta, GA, USA) for supplying DB293 and many other DNA and RNA binding agents for SPR studies as well as for helpful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, Y., Wilson, W.D. (2010). Quantitative Analysis of Small Molecule–Nucleic Acid Interactions with a Biosensor Surface and Surface Plasmon Resonance Detection. In: Fox, K. (eds) Drug-DNA Interaction Protocols. Methods in Molecular Biology, vol 613. Humana Press. https://doi.org/10.1007/978-1-60327-418-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-418-0_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-417-3

  • Online ISBN: 978-1-60327-418-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics