Skip to main content
Book cover

Zebrafish pp 133–143Cite as

Nitroreductase-Mediated Cell Ablation in Transgenic Zebrafish Embryos

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 546))

Summary

Prodrug dependent cell ablation is a method that allows inducible and spatially restricted cell destruction. We describe transgenic methods to express the Escherichia coli nfsB in a tissue restricted manner in the zebrafish. This bacterial gene encodes a nitroreductase (NTR) enzyme that can render prodrugs such as metronidazole (Met) cytotoxic. Using the expression of NTR fused to a fluorescent protein, one can simultaneously make cells susceptible to prodrug treatment and visualize cell ablation as it occurs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yang, C. T., and Johnson, S. L. (2006). Small molecule-induced ablation and subsequent regeneration of larval zebrafish melanocytes, Development 133, 3563–3573.

    Article  CAS  PubMed  Google Scholar 

  2. Borrelli, E., Heyman, R., Hsi, M., and Evans, R. M. (1988) Targeting of an inducible toxic phenotype in animal cells, Proc Natl Acad Sci U S A 85, 7572–7576.

    Article  CAS  PubMed  Google Scholar 

  3. Clark, A. J., Iwobi, M., Cui, W., Crompton, M., Harold, G., Hobbs, S., Kamalati, T., Knox, R., Neil, C., Yull, F., and Gusterson, B. (1997). Selective cell ablation in transgenic mice expression E. coli nitroreductase, Gene Ther 4, 101–110.

    CAS  Google Scholar 

  4. Drabek, D., Guy, J., Craig, R., and Grosveld, F. (1997). The expression of bacterial nitroreductase in transgenic mice results in specific cell killing by the prodrug CB1954, Gene Ther 4, 93–100.

    Article  CAS  PubMed  Google Scholar 

  5. Smith, S. J., Kotecha, S., Towers, N., and Mohun, T. J. (2007). Targeted cell-ablation in Xenopus embryos using the conditional, toxic viral protein M2(H37A), Dev Dyn 236, 2159–2171.

    CAS  PubMed  Google Scholar 

  6. Poss, K. D., Keating, M. T., and Nechiporuk, A. (2003). Tales of regeneration in zebrafish, Dev Dyn 226, 202–210.

    Article  PubMed  Google Scholar 

  7. Hu, L., Yu, C., Jiang, Y., Han, J., Li, Z., Browne, P., Race, P. R., Knox, R. J., Searle, P. F., and Hyde, E. I. (2003). Nitroaryl phosphoramides as novel prodrugs for E. coli nitroreductase activation in enzyme prodrug therapy, J Med Chem 46, 4818–4821.

    Article  CAS  PubMed  Google Scholar 

  8. Johansson, E., Parkinson, G. N., Denny, W. A., and Neidle, S. (2003). Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form, J Med Chem 46, 4009–4020.

    Article  CAS  PubMed  Google Scholar 

  9. Bridgewater, J. A., Springer, C. J., Knox, R. J., Minton, N. P., Michael, N. P., and Collins, M. K. (1995). Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954, Eur J Cancer 31A, 2362–2370.

    Article  CAS  PubMed  Google Scholar 

  10. Cui, W., Gusterson, B., and Clark, A. J. (1999). Nitroreductase-mediated cell ablation is very rapid and mediated by a p53-independent apoptotic pathway, Gene Ther 6, 764–770.

    Article  CAS  PubMed  Google Scholar 

  11. Cui, W., Allen, N. D., Skynner, M., Gusterson, B., and Clark, A. J. (2001). Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain, Glia 34, 272–282.

    Article  CAS  PubMed  Google Scholar 

  12. Isles, A. R., Ma, D., Milsom, C., Skynner, M. J., Cui, W., Clark, J., Keverne, E. B., and Allen, N. D. (2001). Conditional ablation of neurones in transgenic mice, J Neurobiol 47, 183–193.

    Article  CAS  PubMed  Google Scholar 

  13. Felmer, R., Cui, W., and Clark, A. J. (2002). Inducible ablation of adipocytes in adult transgenic mice expressing the E. coli nitroreductase gene, J Endocrinol 175, 487–498.

    Article  CAS  PubMed  Google Scholar 

  14. Kwak, S. P., Malberg, J. E., Howland, D. S., Cheng, K. Y., Su, J., She, Y., Fennell, M., and Ghavami, A. (2007). Ablation of central nervous system progenitor cells in transgenic rats using bacterial nitroreductase system, J Neurosci Res 85, 1183–1193.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, X. D., Shou, J., Wong, P., French, D. M., and Gao, W. Q. (2004). Notch1-expressing cells are indispensable for prostatic branching morphogenesis during development and re-growth following castration and androgen replacement, J Biol Chem 279, 24733–24744.

    Article  CAS  PubMed  Google Scholar 

  16. Curado, S., Anderson, R. M., Jungblut, B., Mumm, J., Schroeter, E., and Stainier, D. Y. (2007). Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies, Dev Dyn 236, 1025–1035.

    Article  CAS  PubMed  Google Scholar 

  17. Pisharath, H., Rhee, J. M., Swanson, M. A., Leach, S. D., and Parsons, M. J. (2007). Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase, Mech Dev 124, 218–229.

    CAS  Google Scholar 

  18. Davison, J. M., Akitake, C. M., Goll, M. G., Rhee, J. M., Gosse, N., Baier, H., Halpern, M. E., Leach, S. D., and Parsons, M. J. (2007). Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish, Dev Biol 304, 811–824.

    Article  CAS  PubMed  Google Scholar 

  19. Fischer, J. A., Giniger, E., Maniatis, T., and Ptashne, M. (1988). GAL4 activates transcription in Drosophila, Nature 332, 853–856.

    Article  CAS  PubMed  Google Scholar 

  20. Westerfield, M. (1993) The Zebrafish Book, University of Oregon, OR.

    Google Scholar 

  21. Koster, R. W., and Fraser, S. E. (2001). Tracing transgene expression in living zebrafish embryos, Dev Biol 233, 329–346.

    Article  CAS  PubMed  Google Scholar 

  22. Scheer, N., and Campos-Ortega, J. A. (1999). Use of the Gal4-UAS technique for targeted gene expression in the zebrafish, Mech Dev 80, 153–158.

    Article  CAS  PubMed  Google Scholar 

  23. Kawakami, K., and Shima, A. (1999). Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio, Gene 240, 239–244.

    Article  CAS  PubMed  Google Scholar 

  24. Kawakami, K., Shima, A., and Kawakami, N. (2000). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage, Proc Natl Acad Sci U S A 97, 11403–11408.

    Article  CAS  PubMed  Google Scholar 

  25. Brand, A. H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development 118, 401–415.

    CAS  PubMed  Google Scholar 

  26. Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist’s Swiss army knife, Genesis 34, 1–15.

    Article  CAS  PubMed  Google Scholar 

  27. O’Brien, B. A., Harmon, B. V., Cameron, D. P., and Allan, D. J. (1996). Beta-cell apoptosis is responsible for the development of IDDM in the multiple low-dose streptozotocin model, J Pathol 178, 176–181.

    Article  PubMed  Google Scholar 

  28. Danial, N. N., and Korsmeyer, S. J. (2004). Cell death: critical control points, Cell 116, 205–219.

    Article  CAS  PubMed  Google Scholar 

  29. Hughes, J., and Gobe, G. (2007). Identification and quantification of apoptosis in the kidney using morphology, biochemical and molecular markers, Nephrology (Carlton) 12, 452–458.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Steve Leach for critical reading of the manuscript and Matthew Knabel for expert technical support. HP was supported by NIH NCRR T32 Grant 07002. MJP is supported in part by funding from the Juvenile Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Parsons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pisharath, H., Parsons, M.J. (2009). Nitroreductase-Mediated Cell Ablation in Transgenic Zebrafish Embryos. In: Lieschke, G., Oates, A., Kawakami, K. (eds) Zebrafish. Methods in Molecular Biology, vol 546. Humana Press. https://doi.org/10.1007/978-1-60327-977-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-977-2_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-976-5

  • Online ISBN: 978-1-60327-977-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics