Skip to main content

Analysis of Grooming Behavior and Its Utility in Studying Animal Stress, Anxiety, and Depression

  • Protocol
  • First Online:
Book cover Mood and Anxiety Related Phenotypes in Mice

Part of the book series: Neuromethods ((NM,volume 42))

Abstract

In rodents, grooming is a complex and ethologically rich behavior, sensitive to stress and various genetic and pharmacological manipulations, all of which may alter its gross activity and patterning. Observational analysis of grooming activity and its microstructure may serve as a useful measure of stress and anxiety in both wild and laboratory animals. Few studies have looked at grooming behavior more than cursorily, though in-depth analysis of the behavior would immensely benefit fields utilizing rodent research. Here, we present a qualitative approach to grooming activity and patterning analysis in mice, which provides insight into the effects of stress, anxiety, and depression on this behavioral domain. The method involves quantification of the transitions between different stages of grooming, the percentages of incorrect or incomplete grooming bouts, as well as the regional distribution of grooming activity. Using grooming patterning as a behavioral endpoint, this approach permits assessment of stress levels of individual animals, allows identification of grooming phenotypes in various mouse strains, and has vast implications in biological psychiatry, including psychopharmacology, genetics, neurophysiology, and experimental modeling of affective disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sachs BD. The development of grooming and its expression in adult animals. Ann N Y Acad Sci 1988;525:1–17.

    Article  PubMed  CAS  Google Scholar 

  2. Bolles RC. Grooming behavior in the rat. J Comp Physiol Psychol 1960;53:306–10.

    Article  PubMed  CAS  Google Scholar 

  3. Fentress JC. Expressive contexts, fine structure, and central mediation of rodent grooming. Ann N Y Acad Sci 1988;525:18–26.

    Article  PubMed  CAS  Google Scholar 

  4. Terry RL. Primate grooming as a tension reduction mechanism. J Psychol 1970;76:129–36.

    Article  PubMed  CAS  Google Scholar 

  5. Spruijt BM, van Hooff JA, Gispen WH. Ethology and neurobiology of grooming behavior. Physiol Rev 1992;72:825–52.

    PubMed  CAS  Google Scholar 

  6. Kalueff AV, Lou YR, Laaksi I, Tuohimaa P. Abnormal behavioral organization of grooming in mice lacking the vitamin D receptor gene. J Neurogenet 2005;19:1–24.

    Article  PubMed  CAS  Google Scholar 

  7. Colbern DL, Gispen WH. Neural mechanisms and biological significance of grooming behavior. In: Colbern DL, Gispen WH, eds. Ann N Y Acad Sci. New York; 1988:Preface.

    Google Scholar 

  8. Kalueff AV, Aldridge JW, LaPorte JL, Murphy DL, Tuohimaa P. Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc 2007;2: 2538–44.

    Article  PubMed  CAS  Google Scholar 

  9. Kalueff AV, Tuohimaa P. Grooming analysis algorithm for neurobehavioural stress research. Brain Res Brain Res Protoc 2004; 13:151–8.

    Article  PubMed  Google Scholar 

  10. Hill RA, McInnes KJ, Gong EC, Jones ME, Simpson ER, Boon WC. Estrogen deficient male mice develop compulsive behavior. Biol Psychiatry 2007;61:359–66.

    Article  PubMed  CAS  Google Scholar 

  11. Hyman SE. Neuroscience: obsessed with grooming. Nature 2007;448:871–2.

    Article  PubMed  CAS  Google Scholar 

  12. Rupniak NM, Carlson EJ, Webb JK, et al. Comparison of the phenotype of NK1R–/– mice with pharmacological blockade of the substance P (NK1 ) receptor in assays for antidepressant and anxiolytic drugs. Behav Pharmacol 2001;12:497–508.

    Article  PubMed  CAS  Google Scholar 

  13. Campbell KM, de Lecea L, Severynse DM, et al. OCD-Like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1+ neurons. J Neurosci 1999;19:5044–53.

    PubMed  CAS  Google Scholar 

  14. Clement Y, Adelbrecht C, Martin B, Chapouthier G. Association of autosomal loci with the grooming activity in mice observed in open-field. Life Sci 1994;55:1725–34.

    Article  PubMed  CAS  Google Scholar 

  15. Aldridge JW, Berridge KC, Rosen AR. Basal ganglia neural mechanisms of natural movement sequences. Can J Physiol Pharmacol 2004;82:732–9.

    Article  PubMed  CAS  Google Scholar 

  16. Berridge KC, Aldridge JW, Houchard KR, Zhuang X. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's. BMC Biol 2005;3:1–16.

    Article  Google Scholar 

  17. Roeling TA, Veening JG, Peters JP, Vermelis ME, Nieuwenhuys R. Efferent connections of the hypothalamic “grooming area” in the rat. Neuroscience 1993;56:199–225.

    Article  PubMed  CAS  Google Scholar 

  18. Kruk MR, Westphal KG, Van Erp AM, et al. The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neurosci Biobehav Rev 1998;23:163–77.

    Article  PubMed  CAS  Google Scholar 

  19. Barros HM, Tannhauser SL, Tannhauser MA, Tannhauser M. The effects of GABAergic drugs on grooming behaviour in the open field. Pharmacol Toxicol 1994;74:339–44.

    Article  PubMed  CAS  Google Scholar 

  20. Bertolini A, Poggioli R, Vergoni AV. Cross-species comparison of the ACTH-induced behavioral syndrome. Ann N Y Acad Sci 1988;525:114–29.

    Article  PubMed  CAS  Google Scholar 

  21. Dunn AJ. Studies on the neurochemical mechanisms and significance of ACTH-induced grooming. Ann N Y Acad Sci 1988;525:150–68.

    Article  PubMed  CAS  Google Scholar 

  22. Dunn AJ, Berridge CW, Lai YI, Yachabach TL. CRF-induced excessive grooming behavior in rats and mice. Peptides 1987;8:841–4.

    Article  PubMed  CAS  Google Scholar 

  23. Ukai M, Toyoshi T, Kameyama T. Multi-dimensional analysis of behavior in mice treated with the delta opioid agonists DADL (D-Ala2-D-Leu5-enkephalin) and DPLPE (D-Pen2-L-Pen5-enkephalin). Neuropharmacology 1989;28:1033–9.

    Article  PubMed  CAS  Google Scholar 

  24. Audet MC, Goulet S, Dore FY. Repeated subchronic exposure to phencyclidine elicits excessive atypical grooming in rats. Behav Brain Res 2006;167:103–10.

    Article  PubMed  CAS  Google Scholar 

  25. Choleris E, Thomas AW, Kavaliers M, Prato FS. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 2001;25:235–60.

    Article  PubMed  CAS  Google Scholar 

  26. Enginar N, Hatipoglu I, Firtina M. Evaluation of the acute effects of amitriptyline and fluoxetine on anxiety using grooming analysis algorithm in rats. Pharmacol Biochem Behav 2008;89:450–5.

    Article  PubMed  CAS  Google Scholar 

  27. Kalueff AV, Tuohimaa P. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur J Pharmacol 2005;508:147–53.

    Article  PubMed  CAS  Google Scholar 

  28. Kalueff AV, Tuohimaa P. Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behav Brain Res 2005;160:1–10.

    Article  PubMed  Google Scholar 

  29. Kalueff AV, Tuohimaa P. The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods 2005;143:169–77.

    Article  PubMed  Google Scholar 

  30. Kalueff AV, Tuohimaa P. Contrasting grooming phenotypes in C57Bl/6 and 129S1/SvImJ mice. Brain Res 2004;1028:75–82.

    Article  PubMed  CAS  Google Scholar 

  31. File SE, Mabbutt PS, Walker JH. Comparison of adaptive responses in familiar and novel environments: modulatory factors. Ann N Y Acad Sci 1988;525:69–79.

    Article  PubMed  CAS  Google Scholar 

  32. Leppanen PK, Ravaja N, Ewalds-Kvist SB. Twenty-three generations of mice bidirectionally selected for open-field thigmotaxis: selection response and repeated exposure to the open field. Behav Processes 2006;72:23–31.

    Article  PubMed  Google Scholar 

  33. Nosek K, Dennis K, Andrus BM, et al. Context and strain-dependent behavioral response to stress. Behav Brain Funct 2008;4:23.

    Article  PubMed  Google Scholar 

  34. Sousa FC, Melo CT, Monteiro AP, et al. Antianxiety and antidepressant effects of riparin III from Aniba riparia (Nees) Mez (Lauraceae) in mice. Pharmacol Biochem Behav 2004;78:27–33.

    Article  PubMed  CAS  Google Scholar 

  35. Ferre P, Fernandez-Teruel A, Escorihuela RM, et al. Behavior of the Roman/Verh high- and low-avoidance rat lines in anxiety tests: relationship with defecation and self-grooming. Physiol Behav 1995;58:1209–13.

    Article  PubMed  CAS  Google Scholar 

  36. Bouwknecht JA, Spiga F, Staub DR, Hale MW, Shekhar A, Lowry CA. Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Res Bull 2007;72:32–43.

    Article  PubMed  CAS  Google Scholar 

  37. Kalueff AV, Lou YR, Laaksi I, Tuohimaa P. Increased grooming behavior in mice lacking vitamin D receptors. Physiol Behav 2004;82:405–9.

    Article  PubMed  CAS  Google Scholar 

  38. Boccalon S, Scaggiante B, Perissin L. Anxiety stress and nociceptive responses in mice. Life Sci 2006;78:1225–30.

    Article  PubMed  CAS  Google Scholar 

  39. Kompagne H, Bardos G, Szenasi G, Gacsalyi I, Harsing LG, Levay G. Chronic mild stress generates clear depressive but ambiguous anxiety-like behaviour in rats. Behav Brain Res 2008;192:311–4.

    Google Scholar 

  40. Piato AL, Detanico BC, Jesus JF, Lhullier FL, Nunes DS, Elisabetsky E. Effects of Marapuama in the chronic mild stress model: Further indication of antidepressant properties. J Ethnopharmacol 2008;118:300–4.

    Article  PubMed  Google Scholar 

  41. Yalcin I, Aksu F, Belzung C. Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. Eur J Pharmacol 2005;514:165–74.

    Article  PubMed  CAS  Google Scholar 

  42. Yalcin I, Aksu F, Bodard S, Chalon S, Belzung C. Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: possible involvement of the noradrenergic system. Behav Pharmacol 2007;18:623–31.

    Article  PubMed  CAS  Google Scholar 

  43. Burne TH, Johnston AN, McGrath JJ, Mackay-Sim A. Swimming behaviour and post-swimming activity in Vitamin D receptor knockout mice. Brain Res Bull 2006;69:74–8.

    Article  PubMed  CAS  Google Scholar 

  44. Welch JM, Lu J, Rodriguiz RM, et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 2007;448:894–900.

    Article  PubMed  CAS  Google Scholar 

  45. Gorris LG, van Abeelen JH. Behavioural effects of (-)naloxone in mice from four inbred strains. Psychopharmacology (Berl) 1981;74:355–9.

    Article  CAS  Google Scholar 

  46. McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 2008;7:152–63.

    Article  PubMed  CAS  Google Scholar 

  47. Mineur YS, Prasol DJ, Belzung C, Crusio WE. Agonistic behavior and unpredictable chronic mild stress in mice. Behav Genet 2003;33:513–9.

    Article  PubMed  Google Scholar 

  48. Wang D, An SC, Zhang X. Prevention of chronic stress-induced depression-like behavior by inducible nitric oxide inhibitor. Neurosci Lett 2008;433:59–64.

    Article  PubMed  CAS  Google Scholar 

  49. Kalueff AV, Maisky VA, Pilyavskii AI, Makarchuk NE. Persistent c-fos expression and NADPH-d reactivity in the medulla and the lumbar spinal cord in rat with short-term peripheral anosmia. Neurosci Lett 2001;301:131–4.

    Article  PubMed  CAS  Google Scholar 

  50. Makarchuk M. [An electrophysiological evaluation of the role of the olfactory analyzer in brain integrative activity]. Fiziol Zh 1999;45:77–83.

    PubMed  Google Scholar 

  51. Makarchuk M, Zyma IH. [Effect of anosmia on sex-related differences in conditioned avoidance in rats]. Fiziol Zh 2002;48:9–15.

    PubMed  Google Scholar 

  52. Makarchuk NE. [The effect of anosmia on sex dimorphism in the patterns of orienting-exploratory, emotional and passive defensive behaviors in rats]. Zh Vyssh Nerv Deiat Im I P Pavlova 1998;48:997–1003.

    PubMed  CAS  Google Scholar 

  53. Fineberg NA, Saxena S, Zohar J, Craig KJ. Obsessive-compulsive disorder: boundary issues. CNS Spectr 2007;12:359–64, 67–75.

    PubMed  Google Scholar 

  54. Diefenbach GJ, Tolin DF, Hannan S, Crocetto J, Worhunsky P. Trichotillomania: impact on psychosocial functioning and quality of life. Behav Res Ther 2005;43:869–84.

    Article  PubMed  Google Scholar 

  55. Hartley JE, Montgomery AM. 8-OH-DPAT inhibits both prandial and waterspray-induced grooming. J Psychopharmacol 2008.

    Google Scholar 

  56. Navarro M, Rubio P, de Fonseca FR. Behavioural consequences of maternal exposure to natural cannabinoids in rats. Psychopharmacology (Berl) 1995;122:1–14.

    Article  CAS  Google Scholar 

  57. Kalueff AV, Laporte JL, Murphy DL, Sufka K. Hybridizing behavioral models: A possible solution to some problems in neurophenotyping research? Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1172–8.

    Article  PubMed  Google Scholar 

  58. Garner JP, Weisker SM, Dufour B, Mench JA Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Comp Med 2004;54:216–24.

    PubMed  CAS  Google Scholar 

  59. Kalueff AV, Minasyan A, Keisala T, Shah ZH, Tuohimaa P. Hair barbering in mice: implications for neurobehavioural research. Behav Processes 2006;71:8–15.

    Article  PubMed  CAS  Google Scholar 

  60. Kurien BT, Gross T, Scofield RH. Barbering in mice: a model for trichotillomania. BMJ 2005;331:1503–5.

    Article  PubMed  Google Scholar 

  61. Sarna JR, Dyck RH, Whishaw IQ. The Dalila effect: C57BL6 mice barber whiskers by plucking. Behav Brain Res 2000;108:39–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the NARSAD YI Award to AVK.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smolinsky, A.N., Bergner, C.L., LaPorte, J.L., Kalueff, A.V. (2009). Analysis of Grooming Behavior and Its Utility in Studying Animal Stress, Anxiety, and Depression. In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 42. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-303-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-303-9_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-302-2

  • Online ISBN: 978-1-60761-303-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics