Skip to main content

Application of Cell Traction Force Microscopy for Cell Biology Research

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 586))

Summary

When a cell migrates, it generates traction forces on the underlying substrate. The cell traction force (CTF) is not only essential for cell migration, but it is also used by cells to control their shape and maintain cellular homeostasis. As such, quantification of CTFs aids in better understanding of many fundamental biological processes such as morphogenesis, angiogenesis, and wound healing of tissues and organs. A new technology called cell traction force microscopy (CTFM) has been developed to determine CTFs in a quantitative fashion. The advantage of this technology is that it directly measures the “cause” (i.e., CTFs) of cell movement instead of the “effect” (i.e., cell movement itself), which is measured by various conventional methods. This chapter provides detailed information of materials and methods that are needed in order to perform typical CTFM experiments. Several examples are also given to illustrate various applications of CTFM in cell biology research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rodriguez, L.G., Wu, X. and Guan, J.L. (2005) Wound-healing assay. Methods Mol Biol 294, 23–29.

    PubMed  Google Scholar 

  2. Thampatty, B.P. and Wang, J.H. (2007) A new approach to study fibroblast migration. Cell Motil Cytoskeleton 64, 1–5.

    Article  CAS  PubMed  Google Scholar 

  3. Ananthakrishnan, R. and Ehrlicher, A. (2007) The forces behind cell movement. Int J Biol Sci 3, 303–317.

    Article  CAS  PubMed  Google Scholar 

  4. Lauffenburger, D.A. and Horwitz, A.F. (1996) Cell migration: a physically integrated molecular process. Cell 84, 359–369.

    Article  CAS  PubMed  Google Scholar 

  5. Oliver, T., Dembo, M. and Jacobson, K. (1995) Traction forces in locomoting cells. Cell Motil Cytoskeleton 31, 225–240.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, J.H. and Lin, J.S. (2007) Cell traction force and measurement methods. Biomech Model Mechanobiol 6, 361–371.

    Article  PubMed  Google Scholar 

  7. Burton, K., Park, J.H. and Taylor, D.L. (1999) Keratocytes generate traction forces in two phases. Mol Biol Cell 10, 3745–3769.

    CAS  PubMed  Google Scholar 

  8. Harris, A.K., Wild, P. and Stopak, D. (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177–179.

    Article  CAS  PubMed  Google Scholar 

  9. Balaban, N.Q., Schwarz, U.S., Riveline, D., et al. (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3, 466–472.

    Article  CAS  PubMed  Google Scholar 

  10. Galbraith, C.G. and Sheetz, M.P. (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci U S A 94, 9114–9118.

    Article  CAS  PubMed  Google Scholar 

  11. du Roure, O., Saez, A., Buguin, A., et al. (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci U S A 102, 2390–2395.

    Article  CAS  PubMed  Google Scholar 

  12. Tan, J.L., Tien, J., Pirone, D.M., et al. (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100, 1484–1489.

    Article  CAS  PubMed  Google Scholar 

  13. Li, B., Xie, L., Starr, Z.C., et al. (2007) Development of micropost force sensor array with culture experiments for determination of cell traction forces. Cell Motil Cytoskeleton 64, 509–518

    Article  PubMed  Google Scholar 

  14. Dembo, M. and Wang, Y.L. (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76, 2307–2316.

    Article  CAS  PubMed  Google Scholar 

  15. Butler, J.P., Tolic-Norrelykke, I.M., Fabry, B., et al. (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282, C595–C605.

    CAS  PubMed  Google Scholar 

  16. Yang, Z., Lin, J.S., Chen, J., et al. (2006) Determining substrate displacement and cell traction fields – a new approach. J Theor Biol 242, 607–616.

    Article  CAS  PubMed  Google Scholar 

  17. Pelham, R.J., Jr. and Wang, Y. (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94, 13661–13665.

    Article  CAS  PubMed  Google Scholar 

  18. Kandow, C.E., Georges, P.C., Janmey, P.A., et al. (2007) Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods Cell Biol 83, 29–46.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J., Li, H., Sundarraj, N., et al. (2007) Alpha-smooth muscle actin expression enhances cell traction force. Cell Motil Cytoskeleton 64, 248–257.

    Article  CAS  PubMed  Google Scholar 

  20. Lo, C.M., Wang, H.B., Dembo, M., et al. (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79, 144–152.

    Article  CAS  PubMed  Google Scholar 

  21. Li, Y., Hu, Z. and Li, C. (1993) New method for measuring Poisson’s ratio in polymer gels. J Appl Polym Sci 50, 1107–1111.

    Article  CAS  Google Scholar 

  22. Anderson, S., DiCesare, L., Tan, I., et al. (2004) Rho-mediated assembly of stress fibers is differentially regulated in corneal fibroblasts and myofibroblasts. Exp Cell Res 298, 574–583.

    Article  CAS  PubMed  Google Scholar 

  23. Hinz, B., Celetta, G., Tomasek, J.J., et al. (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12, 2730–2741.

    CAS  PubMed  Google Scholar 

  24. Wang, J.-C. and Thampatty, P. (2008) Mechanobiology of adult and stem cells. Int Rev Cytol 271, 297-332..

    Google Scholar 

  25. Whitesides, G.M., Ostuni, E., Takayama, S., et al. (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3, 335–373.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the funding support of NIH AR049921 and AR049921S1 (JHW).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, J.HC., Li, B. (2009). Application of Cell Traction Force Microscopy for Cell Biology Research. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 586. Humana Press. https://doi.org/10.1007/978-1-60761-376-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-376-3_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-375-6

  • Online ISBN: 978-1-60761-376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics