Skip to main content

Site-Directed Disulfide Cross-Linking to Probe Conformational Changes of a Transporter During Its Functional Cycle: Escherichia coli AcrB Multidrug Exporter as an Example

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 634))

Abstract

Many proteins, especially transporters, are thought to undergo large conformational alterations during their functional cycle. Since X-ray crystallography usually gives only the most stable conformation, other methods are needed to probe this conformational change. Site-directed disulfide cross-linking is often very useful for this purpose. We illustrate this by using the Escherichia coli AcrB, a proton-motive-force-dependent multidrug efflux transporter. Crystallographic studies of the asymmetric trimer of AcrB suggest that each protomer in the trimeric assembly goes through a cycle of conformational changes during drug export (functional rotation hypothesis). Site-directed disulfide cross-linking between those residues that come close to each other in only one stage in the cycle inactivated the transporter, showing that the conformational changes indeed occurred in vivo and that they are required for drug transport. A dsbA strain, which has a diminished activity to form disulfide bonds in the periplasm, was used to verify the conclusion by showing a restored transport activity in this strain. Furthermore, we describe “a real-time cross-linking experiment,” in which rapidly reacting, sulfhydryl-specific cross-linkers, methanethiosulfonates, inactivate the AcrB double-cysteine mutant expressed in dsbA cells instantaneously.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Falke JJ, Koshland DE Jr (1987) Global flexibility in a sensory receptor: a site-directed cross-linking approach. Science 237:1596–1600

    Article  PubMed  CAS  Google Scholar 

  2. Kadokura H, Katzen F, Beckwith J (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72:111–135

    Article  PubMed  CAS  Google Scholar 

  3. Moore KJ, Fillingame RH (2008) Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase. J Biol Chem 283:31726–31735

    Article  PubMed  CAS  Google Scholar 

  4. Stewart EJ, Aslund F, Beckwith J (1998) Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 17:5543–5550

    Article  PubMed  CAS  Google Scholar 

  5. Masip L, Pan JL, Haldar S et al (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303:1185–1189

    Article  PubMed  CAS  Google Scholar 

  6. Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178:5853–5859

    PubMed  CAS  Google Scholar 

  7. Eswaran J, Koronakis E, Higgins MK, Hughes C, Koronakis V (2004) Three’s company: component structures bring a closer view of tripartite drug efflux pumps. Curr Opin Struct Biol 14:741–747

    Article  PubMed  CAS  Google Scholar 

  8. Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593

    Article  PubMed  CAS  Google Scholar 

  9. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structure of a multidrug transporter reveals a functionally rotating mechanism. Nature 443:173–179

    Article  PubMed  CAS  Google Scholar 

  10. Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:1295–1298

    Article  PubMed  CAS  Google Scholar 

  11. Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grütter MG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5:e7

    Article  PubMed  Google Scholar 

  12. Takatsuka Y, Nikaido H (2007) Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli. J Bacteriol 189:8677–8684

    Article  PubMed  CAS  Google Scholar 

  13. Akabas MH, Stauffer DA, Xu M, Karlin A (1992) Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258:307–310

    Article  PubMed  CAS  Google Scholar 

  14. Kenyon GL, Bruice TW (1977) Novel sulfhydryl reagents. Methods Enzymol 47:407–430

    Article  PubMed  CAS  Google Scholar 

  15. Seeger MA, von Ballmoos C, Eicher T et al (2008) Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nat Struct Mol Biol 15:199–205

    Article  PubMed  CAS  Google Scholar 

  16. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  17. Bryson V, Szybalzski W (1952) Microbial selection. Science 116:45–51

    Article  Google Scholar 

  18. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grant AI-09644 from U.S. Public Health Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nikaido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Takatsuka, Y., Nikaido, H. (2010). Site-Directed Disulfide Cross-Linking to Probe Conformational Changes of a Transporter During Its Functional Cycle: Escherichia coli AcrB Multidrug Exporter as an Example. In: Braman, J. (eds) In Vitro Mutagenesis Protocols. Methods in Molecular Biology, vol 634. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-652-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-652-8_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-651-1

  • Online ISBN: 978-1-60761-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics