Skip to main content

Plant Chromatin Immunoprecipitation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 655))

Abstract

Development of multicellular organisms is based on specialized gene expression programs. Because chromatin establishes the environment for transcription, understanding composition and dynamics of chromatin is an important part of developmental biology. The knowledge about chromatin has been greatly advanced by the chromatin immunoprecipitation (ChIP) technique, because ChIP allows to map the position of proteins as well as modifications of DNA and histones to specific genomic regions. Although ChIP has been applied to a wide range of model organisms, including Arabidopsis, it remains a challenging technique, and a careful experimental setup including appropriate positive and negative controls are required to obtain reliable results. Here, we describe a ChIP protocol adapted for material from Arabidopsis, which we routinely apply in our laboratory, and we discuss required controls and methods for data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260.

    Article  PubMed  CAS  Google Scholar 

  2. Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription. Nature 389, 349–352.

    Article  PubMed  CAS  Google Scholar 

  3. Duo, Y., Mizzen, C. A., Abrams, M., Allis, C. D., and Gorovsky, M. A. (1999) Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol Cell 4, 641–647.

    Article  Google Scholar 

  4. Zhang, Y. and Reinberg, D. (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15, 2343–2360.

    Article  PubMed  CAS  Google Scholar 

  5. Gehring, M. and Henikoff, S. (2007) DNA methylation dynamics in plant genomes. Biochem Biophys Acta 1769, 276–286.

    Article  PubMed  CAS  Google Scholar 

  6. Gilmour, D. S. and Lis, T. J. (1984) Detecting protein-DNA interactions in vivo: Distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci USA 81, 4275–4279.

    Article  PubMed  CAS  Google Scholar 

  7. Dedon, P. C., Soults, J. A., Allis, C. D., and Gorovsky, M. A. (1991) A simplified formaldehyde fixation and immunoprecipitation technique for studying protein–DNA interactions. Anal Biochem 197, 83–90.

    Article  PubMed  CAS  Google Scholar 

  8. Gendrel, A.-V., Lippman, Z., Yordan, C., Colot, V., and Martienssen, R. A. (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297, 1871–1873.

    Article  PubMed  CAS  Google Scholar 

  9. Gendrel, A.-V., Lippman, Z., Martienssen, R. A., and Colot, V. (2005) Profiling histone modification patterns in plants using genomic tiling microarrays. Nat Methods 2, 213–218.

    Article  PubMed  CAS  Google Scholar 

  10. Makarevich, G., Leroy, O., Akinci, U., Schubert, D., Clarenz, O., Goodrich, J., Grossniklaus, U., and Köhler, C. (2006) Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 7, 947–952.

    Article  PubMed  CAS  Google Scholar 

  11. Schönrock, N., Bouveret, R., Leroy, O., Borghi, L., Köhler, C., Gruissem, W., and Hennig, L. (2006) Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev 20, 1667–1678.

    Article  PubMed  Google Scholar 

  12. Villar, C. B. R., Erilova, A., Makarevich, G., Trösch, R., and Köhler, C. (2009) Control of PHERES1 imprinting in Arabidopsis by direct tandem repeats. Mol Plant 2, 654–660.

    Google Scholar 

  13. O’Neill, L. P. and Turner, B. M. (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82.

    Article  PubMed  Google Scholar 

  14. Kurdistani, S. K. and Grunstein, M. (2003) In vivo protein-protein and protein-DNA crosslinking for genome-wide binding microarray. Methods 31, 90–95.

    Article  PubMed  CAS  Google Scholar 

  15. Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., and Wade, P. A. (2003) MTA3, a Mi-2/NuRD complex subunit regulates an invasive growth pathway in breast cancer. Cell 113, 207–219.

    Article  PubMed  CAS  Google Scholar 

  16. Nowak, D. E., Tian, B., and Brasier, A. R. (2005) Two-step crosslinking method for the identification of NF-kappa B gene network by chromatin immunoprecipitation. BioTechniques 39, 715–725.

    Article  PubMed  CAS  Google Scholar 

  17. Chua, Y. L., Mott, E., Brown, A. P. C., MacLean, D., and Gray, J. C. (2004) Microarray analysis of chromatin-immunoprecipitated DNA identifies specific regions of tobacco genes associated with acetylated histones. Plant J 37, 789–900.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y. V., Pellegrini, M., Goodrich, J., and Jacobsen, S. E. (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5, e129.

    Article  PubMed  Google Scholar 

  19. Jothi, R., Cuddapah, S., Barski, A., Cui, K., and Zhao, K. (2008) Genome-wide identification of in vivo protein–DNA binding sites from ChIP-seq data.Nucleic Acids Res 36, 5221–5231.

    Article  PubMed  CAS  Google Scholar 

  20. Haring, M., Offermann, S., Danker, T., Horst, I., Peterhänsel, C., and Stam, M. (2007) Chromatin immunoprecipitation: Optimization, quantitative analysis and data normalization. Plant Methods 3, 11.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory is supported by grants from the Swiss National Science Foundation [PP00A-106684/1] and ETH [TH-12 06-1].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Villar, C.B., Köhler, C. (2010). Plant Chromatin Immunoprecipitation. In: Hennig, L., Köhler, C. (eds) Plant Developmental Biology. Methods in Molecular Biology, vol 655. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-765-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-765-5_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-764-8

  • Online ISBN: 978-1-60761-765-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics