Skip to main content

Analysis of Phosphoproteomics Data

  • Protocol
  • First Online:
Data Mining in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 696))

Abstract

Regulation of protein phosphorylation plays an important role in many cellular processes, particularly in signal transduction. Diseases such as cancer and inflammation are often linked to aberrant signaling pathways. Mass spectrometry-based methods allow monitoring the phosphorylation status in an unbiased and quantitative manner. The analysis of this data requires the application of advanced statistical methods, some of which can be borrowed from the gene expression analysis field. Nevertheless, these methods have to be enhanced or complemented by new methods. After reviewing the key concepts of phosphoproteomics and some major data analysis methods, these tools are applied to a real-world data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2000) Signaling–2000 and beyond. Cell 100:113–127

    Article  CAS  PubMed  Google Scholar 

  2. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452

    Article  CAS  PubMed  Google Scholar 

  3. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  CAS  PubMed  Google Scholar 

  4. Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy – from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754:253–262

    CAS  PubMed  Google Scholar 

  5. Tebbe A, Klammer M, Kaminski M, Wandinger S, Eckert C, Müller S, Gorray M, Enghofer E, Schaab C, Godl K (2009) Mode of action analysis of sorafenib by integrating chemical proteomics and phosphoproteomics. Eur J Cancer 7:14–15

    Google Scholar 

  6. Lim YP (2005) Mining the tumor phosphoproteome for cancer markers. Clin Cancer Res 11:3163–3169

    Article  CAS  PubMed  Google Scholar 

  7. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK et al (2007) Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci U S A 104:12867–12872

    Article  CAS  PubMed  Google Scholar 

  8. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  PubMed  Google Scholar 

  9. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221

    Article  CAS  PubMed  Google Scholar 

  10. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ et al (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101

    Article  CAS  PubMed  Google Scholar 

  11. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  12. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  Google Scholar 

  13. Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B, Brusniak MY et al (2007) SuperHirn – a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 7:3470–3480

    Article  CAS  PubMed  Google Scholar 

  14. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  15. Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, Mann M (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705

    Article  CAS  PubMed  Google Scholar 

  16. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121

    Article  CAS  PubMed  Google Scholar 

  17. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle prababilita. Publicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenzi 9:3–62

    Google Scholar 

  18. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  19. Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–803

    Article  Google Scholar 

  20. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  21. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445

    Article  CAS  PubMed  Google Scholar 

  22. Xie Y, Pan W, Khodursky AB (2005) A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics 21:4280–4288

    Article  CAS  PubMed  Google Scholar 

  23. Jiao S, Zhang S (2008) On correcting the overestimation of the permutation-based false discovery rate estimator. Bioinformatics 24:1655–1661

    Article  CAS  PubMed  Google Scholar 

  24. Fisher RA (1935) The logic of inductive inference. J Royal Stat Soc 98:39–54

    Article  Google Scholar 

  25. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M et al (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4:R28

    Article  PubMed  Google Scholar 

  26. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  27. Ackermann M, Strimmer K (2009) A general modular framework for gene set enrichment analysis. BMC Bioinformatics 10:47

    Article  PubMed  Google Scholar 

  28. Goeman JJ, Buhlmann P (2007) Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23:980–987

    Article  CAS  PubMed  Google Scholar 

  29. McDermott U, Sharma SV, Dowell L, Greninger P, Montagut C, Lamb J et al (2007) Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc Natl Acad Sci U S A 104:19936–19941

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y, Cras-Meneur C, Ohsugi M, Stormo GD, Permutt MA (2007) A global approach to identify differentially expressed genes in cDNA (two-color) microarray experiments. Bioinformatics 23:2073–2079

    Article  CAS  PubMed  Google Scholar 

  31. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  Google Scholar 

  32. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  33. Stemmann O, Zou H, Gerber SA, Gygi SP, Kirschner MW (2001) Dual inhibition of sister chromatid separation at metaphase. Cell 107:715–726

    Article  CAS  PubMed  Google Scholar 

  34. Mueller LN, Brusniak MY, Mani DR, Aebersold R (2008) An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7:51–61

    Article  CAS  PubMed  Google Scholar 

  35. Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK (2009) Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 877:1229–1239

    Article  CAS  PubMed  Google Scholar 

  36. Ritz A, Shakhnarovich G, Salomon AR, Raphael BJ (2009) Discovery of phosphorylation motif mixtures in phosphoproteomics data. Bioinformatics 25:14–21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schaab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schaab, C. (2011). Analysis of Phosphoproteomics Data. In: Hamacher, M., Eisenacher, M., Stephan, C. (eds) Data Mining in Proteomics. Methods in Molecular Biology, vol 696. Humana Press. https://doi.org/10.1007/978-1-60761-987-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-987-1_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-986-4

  • Online ISBN: 978-1-60761-987-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics