Skip to main content

Three-Dimensional Culture Systems to Induce Chondrogenesis of Adipose-Derived Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 702))

Abstract

Stem cells can easily be harvested from adipose tissue in large numbers for use in tissue-engineering approaches for cartilage repair or regeneration. In this chapter, we describe in vitro tissue-engineering models that we have used in our laboratory for the chondrogenic induction of adipose-derived stem cells (ASC). In addition to the proper growth factor environment, chondrogenesis requires cells to be maintained in a rounded morphology in three-dimensional (3D) culture, and thus properties of the biomaterial scaffold also play a critical role in ASC differentiation. Histologic and immunohistologic methods for assessing chondrogenesis are also presented. In general, 10–12 weeks are required to assess ASC chondrogenesis in these model systems.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    Nuclei are stained black or dark blue. Bone, muscles (collagen) are stained green, and cartilage is stained orange or red.

References

  1. Aichroth, P.M., Patel, D.V., and Moyes, S.T. (1991). A prospective review of arthroscopic debridement for degenerative joint disease of the knee. Int Orthop, 15, 351–55.

    PubMed  CAS  Google Scholar 

  2. Aubin, P.P., Cheah, H.K., Davis, A.M., and Gross, A.E. (2001). Long-term followup of fresh femoral osteochondral allografts for posttraumatic knee defects. Clin Orthop Relat Res, S318–327.

    Google Scholar 

  3. Baumgaertner, M.R., Cannon, W.D., Jr., Vittori, J.M., Schmidt, E.S., and Maurer, R.C. (1990). Arthroscopic debridement of the arthritic knee. Clin Orthop Relat Res, 253, 197–202.

    PubMed  Google Scholar 

  4. Denoncourt, P.M., Patel, D., and Dimakopoulos, P. (1986). Arthroscopy update #1. Treatment of osteochondrosis dissecans of the knee by arthroscopic curettage, follow-up study. Orthop Rev, 15, 652–657.

    PubMed  CAS  Google Scholar 

  5. Emmerson, B.C., Gortz, S., Jamali, A.A., Chung, C., Amiel, D., and Bugbee, W.D. (2007). Fresh osteochondral allografting in the treatment of osteochondritis dissecans of the femoral condyle. Am J Sports Med, 35, 907–914.

    Article  PubMed  Google Scholar 

  6. Friedman, M.J., Berasi, C.C., and Fox, J.M. (1984). Preliminary results with abrasion arthroplasty in the osteoarthritic knee. Clin Orthop Relat Res, 182, 200–205.

    PubMed  Google Scholar 

  7. Ghazavi, M.T., Pritzker, K.P., Davis, A.M., and Gross, A.E. (1997). Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br, 79, 1008–1013.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson, L.L. (2001). Arthroscopic abrasion arthroplasty: a review. Clin Orthop Relat Res, S306–S317.

    Google Scholar 

  9. Kish, G., Modis, L., and Hangody, L. (1999). Osteochondral mosaicplasty for the treatment of focal chondral and osteochondral lesions of the knee and talus in the athlete. Rationale, indications, techniques, and results. Clin Sports Med, 18, 45–66, vi.

    Article  PubMed  CAS  Google Scholar 

  10. Steadman, J.R., Briggs, K.K., Rodrigo, J.J., Kocher, M.S., Gill, T.J., and Rodkey, W.G. (2003). Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy, 19, 477–484.

    Article  PubMed  Google Scholar 

  11. Steadman, J.R., Rodkey, W.G., and Rodrigo, J.J. (2001). Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res, S362–S369.

    Google Scholar 

  12. Knutsen, G., Drogset, J.O., Engebretsen, L., Grontvedt, T., Isaksen, V., Ludvigsen, T.C., Roberts, S., Solheim, E., Strand, T., and Johansen, O. (2007). A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am, 89, 2105–2112.

    Article  PubMed  Google Scholar 

  13. Jackson, D.W., Simon, T.M., and Aberman, H.M. (2001). Symptomatic articular cartilage degeneration: the impact in the new millennium. Clin Orthop Relat Res, S14–S25.

    Google Scholar 

  14. Awad, H.A., Halvorsen, Y.C., Gimble, J.M., and Guilak, F. (2003). Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng, 9, 1301–1312.

    Article  PubMed  CAS  Google Scholar 

  15. Awad, H.A., Wickham, M.Q., Leddy, H.A., Gimble, J.M., and Guilak, F. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 25, 3211–3222.

    Article  PubMed  CAS  Google Scholar 

  16. Erickson, G.R., Gimble, J.M., Franklin, D.M., Rice, H.E., Awad, H., and Guilak, F. (2002). Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun, 290, 763–769.

    Article  PubMed  CAS  Google Scholar 

  17. Guilak, F., Lott, K.E., Awad, H.A., Cao, Q., Hicok, K.C., Fermor, B., and Gimble, J.M. (2006). Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol, 206, 229–237.

    Article  PubMed  CAS  Google Scholar 

  18. Halvorsen, Y.C., Wilkison, W.O., and Gimble, J.M. (2000). Adipose-derived stromal cells – their utility and potential in bone formation. Int J Obes Relat Metab Disord, 24(Suppl 4), S41–S44.

    Article  PubMed  CAS  Google Scholar 

  19. Huang, C.Y., Reuben, P.M., D’Ippolito, G., Schiller, P.C., and Cheung, H.S. (2004). Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat Rec A Discov Mol Cell Evol Biol, 278, 428–436.

    Article  PubMed  Google Scholar 

  20. Safford, K.M., Hicok, K.C., Safford, S.D., Halvorsen, Y.D., Wilkison, W.O., Gimble, J.M., and Rice, H.E. (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun, 294, 371–379.

    Article  PubMed  CAS  Google Scholar 

  21. Wickham, M.Q., Erickson, G.R., Gimble, J.M., Vail, T.P., and Guilak, F. (2003). Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res, 412, 196–212.

    Article  PubMed  Google Scholar 

  22. Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 13, 4279–4295.

    Article  PubMed  CAS  Google Scholar 

  23. Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

  24. Wang, D.W., Fermor, B., Gimble, J.M., Awad, H.A., and Guilak, F. (2005). Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol, 204, 184–191.

    Article  PubMed  CAS  Google Scholar 

  25. Estes, B.T., Wu, A.W., and Guilak, F. (2006). Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum, 54, 1222–1232.

    Article  PubMed  CAS  Google Scholar 

  26. Mauck, R.L., Soltz, M.A., Wang, C.C., Wong, D.D., Chao, P.H., Valhmu, W.B., Hung, C.T., and Ateshian, G.A. (2000). Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng, 122, 252–260.

    Article  PubMed  CAS  Google Scholar 

  27. Hung, C.T., Lima, E.G., Mauck, R.L., Takai, E., LeRoux, M.A., Lu, H.H., Stark, R.G., Guo, X.E., and Ateshian, G.A. (2003). Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech, 36, 1853–1864.

    Article  PubMed  Google Scholar 

  28. Estes, B.T., Diekman, B.O., and Guilak, F. (2008). Monolayer cell expansion conditions affect the chondrogenic potential of adipose-derived stem cells. Biotechnol Bioeng, 99, 986–995.

    Article  PubMed  CAS  Google Scholar 

  29. Diekman, B.O., Estes, B.T., and Guilak, F. (2009). The effects of BMP6 overexpression on adipose stem cell chondrogenesis: interactions with dexamethasone and exogenous growth factors. J Biomed Mater Res A, 93, 994–1003.

    Google Scholar 

  30. Cheng, N.C., Estes, B.T., Awad, H.A., and Guilak, F. (2009). Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng A, 15, 231–241.

    Article  CAS  Google Scholar 

  31. Moutos, F.T., Freed, L.E., and Guilak, F. (2007). A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater, 6, 162–167.

    Article  PubMed  CAS  Google Scholar 

  32. Estes, B.T., Wu, A.W., Storms, R.W., and Guilak, F. (2006). Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol, 209, 987–995.

    Article  PubMed  CAS  Google Scholar 

  33. Hennig, T., Lorenz, H., Thiel, A., Goetzke, K., Dickhut, A., Geiger, F., and Richter, W. (2007). Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol, 211, 682–691.

    Article  PubMed  CAS  Google Scholar 

  34. Estes BT, Diekman BO, Gimble JM, Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc. 2010 Jul;5(7):1294–311. PubMed PMID: 20595958.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by grants from the Duke Translational Medicine Institute, the Coulter Translational Research Partnership, and NIH grants AR50245, AG15768, AR48182, and AR48852. The authors would like to thank Dr. Jeffrey Gimble for many important discussions and collaborations on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Guilak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Estes, B.T., Guilak, F. (2011). Three-Dimensional Culture Systems to Induce Chondrogenesis of Adipose-Derived Stem Cells. In: Gimble, J., Bunnell, B. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 702. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-960-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-960-4_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-959-8

  • Online ISBN: 978-1-61737-960-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics