Skip to main content

Perturbing A-to-I RNA Editing Using Genetics and Homologous Recombination

  • Protocol
  • First Online:
Book cover RNA and DNA Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 718))

Abstract

Evidence for the chemical conversion of adenosine-to-inosine (A-to-I) in messenger RNA (mRNA) has been detected in numerous metazoans, especially those “most successful” phyla: Arthropoda, Mollusca, and Chordata. The requisite enzymes for A-to-I editing, ADARs (adenosine deaminases acting on RNA) are highly conserved and are present in every higher metazoan genome sequenced to date. The fruit fly, Drosophila melanogaster, represents an ideal model organism for studying A-to-I editing, both in terms of fundamental biochemistry and in relation to determining adaptive downstream effects on physiology and behavior. The Drosophila genome contains a single structural gene for ADAR (dAdar), yet the fruit fly transcriptome has the widest range of conserved and validated ADAR targets in coding mRNAs of any known organism. In addition, many of the genes targeted by dADAR have been genetically identified as playing a role in nervous system function, providing a rich source of material to investigate the biological relevance of this intriguing process. Here, we discuss how recent advances in the use of ends-out homologous recombination (HR) in Drosophila make possible both the precise control of the editing status for defined adenosine residues and the engineering of flies with globally altered RNA editing of the fly transcriptome. These new approaches promise to significantly improve our understanding of how mRNA modification contributes to insect physiology and ethology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higuchi, M., Maas, S., Single, F. N., Hartner, J., Rozov, A., Burnashev, N., Feldmeyer, D., Sprengel, R., and Seeburg, P. H. (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81

    Article  PubMed  CAS  Google Scholar 

  2. Wang, Q., Khillan, J., Gadue, P., and Nishikura, K. (2000) Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290, 1765–1768

    Article  PubMed  CAS  Google Scholar 

  3. Palladino, M. J., Keegan, L. P., O’Connell, M. A., and Reenan, R. A. (2000) A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102, 437–449

    Article  PubMed  CAS  Google Scholar 

  4. Tonkin, L. A., Saccomanno, L., Morse, D. P., Brodigan, T., Krause, M., and Bass, B. L. (2002) RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J 21, 6025–6035

    Article  PubMed  CAS  Google Scholar 

  5. Bass, B. L. (2002) RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846

    Article  PubMed  CAS  Google Scholar 

  6. Gallo, A., Keegan, L. P., Ring, G. M., and O’Connell, M. A. (2003) An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J 22, 3421–3430

    Article  PubMed  CAS  Google Scholar 

  7. Basillo C, Wahba A. J, Lengyel P, Speyer J. F., and Ochoa S. (1962) Synthetic polynucleotides and the amino acid code. V. PNAS 48, 613–616

    Article  Google Scholar 

  8. Hanrahan, C. J., Palladino, M. J., Ganetzky, B., and Reenan, R. A. (2000) RNA editing of the Drosophila para Na+ channel transcript. Evolutionary conservation and developmental regulation. Genetics 155, 1149–1160

    CAS  Google Scholar 

  9. Reenan, R. A. (2005) Molecular determinants and guided evolution of species-specific RNA editing. Nature 434, 409–413

    Article  PubMed  CAS  Google Scholar 

  10. Hoopengardner, B., Bhalla, T., Staber, C., and Reenan, R. (2003) Nervous system ­targets of RNA editing identified by comparative genomics. Science 301, 832–836

    Article  PubMed  CAS  Google Scholar 

  11. Grauso, M., Reenan, R. A., Culetto, E., and Sattelle, D. B. (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160, 1519–1533

    PubMed  CAS  Google Scholar 

  12. Smith, L. A., Peixoto, A. A., and Hall, J. C. (1998) RNA editing in the Drosophila DMCA1A calcium-channel alpha 1 subunit transcript. J Neurogenet. 12, 227–240

    Article  PubMed  CAS  Google Scholar 

  13. Semenov, E. P., and Pak, W. L. (1999) Diversification of Drosophila chloride channel gene by multiple post-transcriptional mRNA modifications. J Neurochem 72, 66–72

    Article  PubMed  CAS  Google Scholar 

  14. Hanrahan, C. J., Palladino, M. J., Bonneau, L. J., and Reenan, R. A. (1999) RNA editing of a Drosophila sodium channel gene. Ann N Y Acad Sci 868, 51–66

    Article  PubMed  CAS  Google Scholar 

  15. Bhalla, T., Rosenthal, J. J., Holmgren, M., and Reenan, R. (2004) Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 11, 950–956

    Article  PubMed  CAS  Google Scholar 

  16. Ingleby, L., Maloney, R., Jepson, J., Horn, R., and Reenan, R. (2009) Regulated RNA editing and functional epistasis in Shaker potassium channels. J Gen Phys 133, 17–27

    Article  CAS  Google Scholar 

  17. Rong, Y. S., and Golic, K. G. (2000) Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018

    Article  PubMed  CAS  Google Scholar 

  18. Rong, Y. S., Titen, S. W., Xie, H. B., Golic, M. M., Bastiani, M., Bandyopadhyay, P., Olivera, B. M., Brodsky, M., Rubin, G. M., and Golic, K. G. (2002) Targeted ­mutagenesis by homologous recombination in D. melanogaster. Genes Dev 16, 1568–1581

    Article  PubMed  CAS  Google Scholar 

  19. Wong, S. K., Sato, S., and Lazinski, D. W. (2001) Substrate recognition by ADAR1 and ADAR2. RNA 7, 846–858

    Article  PubMed  CAS  Google Scholar 

  20. Keegan, L. P., Brindle, J., Gallo, A., Leroy, A., Reenan, R. A., and O’Connell, M. A. (2005) Tuning of RNA editing by ADAR is required in Drosophila. EMBO J 24, 2183–2193

    Article  PubMed  CAS  Google Scholar 

  21. Palladino, M. J., Keegan, L. P., O’Connell, M. A., and Reenan, R. A. (2000) dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA 6, 1004–1018

    Article  PubMed  CAS  Google Scholar 

  22. Jones, A. K., Buckingham, S. D., Papadaki, M., Yokota, M., Sattelle, B. M., Matsuda, K., and Sattelle, D. B. (2009) Splice-variant- and stage-specific RNA editing of the Drosophila GABA receptor modulates agonist potency. J Neurosci 29, 4287–4292

    Article  PubMed  CAS  Google Scholar 

  23. Ashburner, M. (1989) Drosophila: A Laboratory Handbook. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  24. Staber C. and Mann R. Quickly and Easily Isolate Genomic DNA from Drosophila With No Preprocessing Using the Maxwell(r) 16 Instrument. Promega Corporation Web site. http://www.promega.com/pubs/tpub_017.htm Updated February 2010. New York

  25. Greenspan, R. J. (1997) Fly Pushing: the theory and practice of Drosophila genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  26. Maggert, K. A., Gong, W. J., and Golic, K. G. (2008) Methods for homologous recombination in Drosophila. Methods Mol Biol 420, 155–174

    Article  PubMed  CAS  Google Scholar 

  27. Siegal, M. L. and Hartl, D. L. (1996) Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144, 715–726

    PubMed  CAS  Google Scholar 

  28. O’Keefe, L. V., Smibert, P., Colella, A., Chataway, T. K., Saint, R., and Richards, R. I (2007) Know thy fly. TIGS 23, 238–242

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank members of the Reenan lab for helpful discussions and suggestions, especially Sarah Goldgar, and Leila Rieder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Reenan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Staber, C.J., Gell, S., Jepson, J.E.C., Reenan, R.A. (2011). Perturbing A-to-I RNA Editing Using Genetics and Homologous Recombination. In: Aphasizhev, R. (eds) RNA and DNA Editing. Methods in Molecular Biology, vol 718. Humana Press. https://doi.org/10.1007/978-1-61779-018-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-018-8_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-017-1

  • Online ISBN: 978-1-61779-018-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics