Skip to main content

ChIP-Seq Data Analysis: Identification of Protein–DNA Binding Sites with SISSRs Peak-Finder

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 802))

Abstract

Protein–DNA interactions play key roles in determining gene-expression programs during cellular development and differentiation. Chromatin immunoprecipitation (ChIP) is the most widely used assay for probing such interactions. With recent advances in sequencing technology, ChIP-Seq, an approach that combines ChIP and next-generation parallel sequencing is fast becoming the method of choice for mapping protein–DNA interactions on a genome-wide scale. Here, we briefly review the ChIP-Seq approach for mapping protein–DNA interactions and describe the use of the SISSRs peak-finder, a software tool for precise identification of protein–DNA binding sites from sequencing data generated using ChIP-Seq.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Boyer LA, Lee TI, Cole MF et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956.

    Article  PubMed  CAS  Google Scholar 

  2. Chen X, Xu H, Yuan P et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117.

    Article  PubMed  CAS  Google Scholar 

  3. Ho L, Jothi R, Ronan JL et al (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proceedings of the National Academy of Sciences of the United States of America 106:5187–5191.

    Article  PubMed  CAS  Google Scholar 

  4. Molkentin JD (2000) The zinc finger-containing transcription factors GATA-4, -5, and −6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275:38949–38952.

    Article  PubMed  CAS  Google Scholar 

  5. Hou C, Dale R, Dean A (2010) Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proceedings of the National Academy of Sciences of the United States of America 107:3651–3656.

    Article  PubMed  CAS  Google Scholar 

  6. Rampakakis E, Gkogkas C, Di Paola D et al (2010) Replication initiation and DNA topology: The twisted life of the origin. J Cell Biochem 110:35–43.

    PubMed  CAS  Google Scholar 

  7. Cohn MA, D’Andrea AD (2008) Chromatin recruitment of DNA repair proteins: lessons from the fanconi anemia and double-strand break repair pathways. Mol Cell 32:306–312.

    Article  PubMed  CAS  Google Scholar 

  8. Shivji MK, Venkitaraman AR (2004) DNA recombination, chromosomal stability and carcinogenesis: insights into the role of BRCA2. DNA Repair (Amst) 3:835–843.

    Article  CAS  Google Scholar 

  9. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947.

    Article  PubMed  CAS  Google Scholar 

  10. Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309.

    Article  PubMed  CAS  Google Scholar 

  11. Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nat Methods 4:613–614.

    Article  PubMed  CAS  Google Scholar 

  12. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680.

    Article  PubMed  CAS  Google Scholar 

  13. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837.

    Article  PubMed  CAS  Google Scholar 

  14. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502.

    Article  PubMed  CAS  Google Scholar 

  15. Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657.

    Article  PubMed  CAS  Google Scholar 

  16. Barski A, Jothi R, Cuddapah S et al (2009) Chromatin poises miRNA- and protein-coding genes for expression. Genome Research 19:1742–1751.

    Article  PubMed  CAS  Google Scholar 

  17. Cuddapah S, Jothi R, Schones DE et al (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Research 19:24–32.

    Article  PubMed  CAS  Google Scholar 

  18. Barski A, Zhao K (2009) Genomic location analysis by ChIP-Seq. J Cell Biochem 107:11–18.

    Article  PubMed  CAS  Google Scholar 

  19. Cuddapah S, Barski A, Cui K et al (2009) Native chromatin preparation and Illumina/Solexa library construction. Cold Spring Harb Protoc 2009:pdb prot5237.

    Google Scholar 

  20. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.

    Article  PubMed  Google Scholar 

  21. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research 18:1851–1858.

    Article  PubMed  CAS  Google Scholar 

  22. Jothi R, Cuddapah S, Barski A et al (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Research 36:5221–5231.

    Article  PubMed  CAS  Google Scholar 

  23. http://www.rajajothi.com.

  24. http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/sissrs/.

  25. http://www.perl.org.

  26. http://genome.ucsc.edu/FAQ/FAQformat#format1.

  27. Narlikar L, Gordan R, Hartemink AJ (2007) A nucleosome-guided map of transcription factor binding sites in yeast. PLoS Comput Biol 3:e215.

    Article  PubMed  Google Scholar 

  28. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36.

    PubMed  CAS  Google Scholar 

  29. Li L (2009) GADEM: a genetic algorithm guided formation of spaced dyads coupled with an EM algorithm for motif discovery. J Comput Biol 16:317–329.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences (Project number ES102625–02 to R.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Jothi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Narlikar, L., Jothi, R. (2012). ChIP-Seq Data Analysis: Identification of Protein–DNA Binding Sites with SISSRs Peak-Finder. In: Wang, J., Tan, A., Tian, T. (eds) Next Generation Microarray Bioinformatics. Methods in Molecular Biology, vol 802. Humana Press. https://doi.org/10.1007/978-1-61779-400-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-400-1_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-399-8

  • Online ISBN: 978-1-61779-400-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics