Skip to main content

AGGRESCAN: Method, Application, and Perspectives for Drug Design

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Protein aggregation underlies the development of an increasing number of conformational human diseases of growing incidence, such as Alzheimer’s and Parkinson’s diseases. Furthermore, the accumulation of recombinant proteins as intracellular aggregates represents a critical obstacle for the biotechnological production of polypeptides. Also, ordered protein aggregates constitute novel and versatile nanobiomaterials. Consequently, there is an increasing interest in the development of methods able to forecast the aggregation properties of polypeptides in order to modulate their intrinsic solubility. In this context, we have developed AGGRESCAN, a simple and fast algorithm that predicts aggregation-prone segments in protein sequences, compares the aggregation properties of different proteins or protein sets and analyses the effect of mutations on protein aggregation propensities.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Panda, A. K. (2003) Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli, Adv Biochem Eng Biotechnol 85, 43–93.

    PubMed  CAS  Google Scholar 

  2. Chennamsetty, N., Voynov, V., Kayser, V., Helk, B., and Trout, B. L. Prediction of aggregation prone regions of therapeutic proteins, J Phys Chem B 114, 6614–6624.

    Google Scholar 

  3. Rosenberg, A. S. (2006) Effects of protein aggregates: an immunologic perspective, AAPS J 8, E501–507.

    Article  PubMed  Google Scholar 

  4. Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease, Annu Rev Biochem 75, 333–366.

    Article  PubMed  CAS  Google Scholar 

  5. Mitraki, A. Protein aggregation from inclusion bodies to amyloid and biomaterials, Adv Protein Chem Struct Biol 79, 89–125.

    Google Scholar 

  6. Chiti, F., Stefani, M., Taddei, N., Ramponi, G., and Dobson, C. M. (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates, Nature 424, 805–808.

    Article  PubMed  CAS  Google Scholar 

  7. Ventura, S., Zurdo, J., Narayanan, S., Parreno, M., Mangues, R., Reif, B., Chiti, F., Giannoni, E., Dobson, C. M., Aviles, F. X., and Serrano, L. (2004) Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case, Proc Natl Acad Sci U S A 101, 7258–7263.

    Article  PubMed  CAS  Google Scholar 

  8. Ivanova, M. I., Sawaya, M. R., Gingery, M., Attinger, A., and Eisenberg, D. (2004) An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril, Proc Natl Acad Sci U S A 101, 10584–10589.

    Article  PubMed  CAS  Google Scholar 

  9. Rousseau, F., Serrano, L., and Schymkowitz, J. W. (2006) How evolutionary pressure against protein aggregation shaped chaperone specificity, J Mol Biol 355, 1037–1047.

    Article  PubMed  CAS  Google Scholar 

  10. Reumers, J., Maurer-Stroh, S., Schymkowitz, J., and Rousseau, F. (2009) Protein sequences encode safeguards against aggregation, Hum Mutat 30, 431–437.

    Article  PubMed  CAS  Google Scholar 

  11. Otzen, D. E., Kristensen, O., and Oliveberg, M. (2000) Designed protein tetramer zipped together with a hydrophobic Alzheimer homology: a structural clue to amyloid assembly, Proc Natl Acad Sci U S A 97, 9907–9912.

    Article  PubMed  CAS  Google Scholar 

  12. Richardson, J. S., and Richardson, D. C. (2002) Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation, Proc Natl Acad Sci U S A 99, 2754–2759.

    Article  PubMed  CAS  Google Scholar 

  13. DuBay, K. F., Pawar, A. P., Chiti, F., Zurdo, J., Dobson, C. M., and Vendruscolo, M. (2004) Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains, J Mol Biol 341, 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  14. Thompson, M. J., Sievers, S. A., Karanicolas, J., Ivanova, M. I., Baker, D., and Eisenberg, D. (2006) The 3D profile method for identifying fibril-forming segments of proteins, Proc Natl Acad Sci U S A 103, 4074–4078.

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J., and Serrano, L. (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins, Nat Biotechnol 22, 1302–1306.

    Article  PubMed  CAS  Google Scholar 

  16. Ciaccio, N. A., and Laurence, J. S. (2009) Effects of disulfide bond formation and protein helicity on the aggregation of activating transcription factor 5, Mol Pharm 6, 1205–1215.

    Article  PubMed  CAS  Google Scholar 

  17. David, M. P., Concepcion, G. P., and Padlan, E. A. Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies, BMC Bioinformatics 11, 79.

    Google Scholar 

  18. Greenwald, J., Buhtz, C., Ritter, C., Kwiatkowski, W., Choe, S., Maddelein, M. L., Ness, F., Cescau, S., Soragni, A., Leitz, D., Saupe, S. J., and Riek, R. The mechanism of prion inhibition by HET-S, Mol Cell 38, 889–899.

    Google Scholar 

  19. Starck, C. S., and Sutherland-Smith, A. J. Cytotoxic aggregation and amyloid formation by the myostatin precursor protein, PLoS One 5, e9170.

    Google Scholar 

  20. Gordon, L. M., Nisthal, A., Lee, A. B., Eskandari, S., Ruchala, P., Jung, C. L., Waring, A. J., and Mobley, P. W. (2008) Structural and functional properties of peptides based on the N-terminus of HIV-1 gp41 and the C-terminus of the amyloid-beta protein, Biochim Biophys Acta 1778, 2127–2137.

    Article  PubMed  CAS  Google Scholar 

  21. Parasassi, T., De Spirito, M., Mei, G., Brunelli, R., Greco, G., Lenzi, L., Maulucci, G., Nicolai, E., Papi, M., Arcovito, G., Tosatto, S. C., and Ursini, F. (2008) Low density lipoprotein misfolding and amyloidogenesis, FASEB J 22, 2350–2356.

    Article  PubMed  CAS  Google Scholar 

  22. Vendruscolo, M., and Tartaglia, G. G. (2008) Towards quantitative predictions in cell biology using chemical properties of proteins, Mol Biosyst 4, 1170–1175.

    Article  PubMed  CAS  Google Scholar 

  23. de Groot, N. S., and Ventura, S. Protein aggregation profile of the bacterial cytosol, PLoS One 5, e9383.

    Google Scholar 

  24. Cerda-Costa, N., Esteras-Chopo, A., Aviles, F. X., Serrano, L., and Villegas, V. (2007) Early kinetics of amyloid fibril formation reveals conformational reorganisation of initial aggregates, J Mol Biol 366, 1351–1363.

    Article  PubMed  CAS  Google Scholar 

  25. Conchillo-Sole, O., de Groot, N. S., Aviles, F. X., Vendrell, J., Daura, X., and Ventura, S. (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides, BMC Bioinformatics 8, 65.

    Article  PubMed  Google Scholar 

  26. de Groot, N. S., Aviles, F. X., Vendrell, J., and Ventura, S. (2006) Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer’s peptide. Side-chain properties correlate with aggregation propensities, FEBS J 273, 658–668.

    Article  PubMed  Google Scholar 

  27. Sanchez de Groot, N., Pallares, I., Aviles, F. X., Vendrell, J., and Ventura, S. (2005) Prediction of “hot spots” of aggregation in disease-linked polypeptides, BMC Struct Biol 5, 18.

    Article  PubMed  Google Scholar 

  28. Espargaro, A., Castillo, V., de Groot, N. S., and Ventura, S. (2008) The in vivo and in vitro aggregation properties of globular proteins correlate with their conformational stability: the SH3 case, J Mol Biol 378, 1116–1131.

    Article  PubMed  CAS  Google Scholar 

  29. Castillo, V., and Ventura, S. (2009) Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases, PLoS Comput Biol 5, e1000476.

    Article  PubMed  Google Scholar 

  30. Mahalka, A. K., and Kinnunen, P. K. (2009) Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L, Biochim Biophys Acta 1788, 1600–1609.

    Article  PubMed  CAS  Google Scholar 

  31. Frousios, K. K., Iconomidou, V. A., Karletidi, C. M., and Hamodrakas, S. J. (2009) Amyloidogenic determinants are usually not buried, BMC Struct Biol 9, 44.

    Article  PubMed  Google Scholar 

  32. Walther, F. J., Waring, A. J., Hernandez-Juviel, J. M., Gordon, L. M., Wang, Z., Jung, C. L., Ruchala, P., Clark, A. P., Smith, W. M., Sharma, S., and Notter, R. H. Critical structural and functional roles for the N-terminal insertion sequence in surfactant protein B analogs, PLoS One 5, e8672.

    Google Scholar 

  33. Sabbaghian, M., Ebrahim-Habibi, A., and Nemat-Gorgani, M. (2009) Thermal aggregation of a model allosteric protein in different conformational states, Int J Biol Macromol 44, 156–162.

    Article  PubMed  CAS  Google Scholar 

  34. Moffatt, P., Smith, C. E., St-Arnaud, R., and Nanci, A. (2008) Characterization of Apin, a secreted protein highly expressed in tooth-associated epithelia, J Cell Biochem 103, 941–956.

    Article  PubMed  CAS  Google Scholar 

  35. Torrent, M., Badia, M., Moussaoui, M., Sanchez, D., Nogues, M. V., and Boix, E. Comparison of human RNase 3 and RNase 7 bactericidal action at the Gram-negative and Gram-positive bacterial cell wall, FEBS J 277, 1713–1725.

    Google Scholar 

  36. Torrent, M., Sanchez, D., Buzon, V., Nogues, M. V., Cladera, J., and Boix, E. (2009) Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7, Biochim Biophys Acta 1788, 1116–1125.

    Article  PubMed  CAS  Google Scholar 

  37. Amijee, H., Madine, J., Middleton, D. A., and Doig, A. J. (2009) Inhibitors of protein aggregation and toxicity, Biochem Soc Trans 37, 692–696.

    Article  PubMed  CAS  Google Scholar 

  38. Adessi, C., Frossard, M. J., Boissard, C., Fraga, S., Bieler, S., Ruckle, T., Vilbois, F., Robinson, S. M., Mutter, M., Banks, W. A., and Soto, C. (2003) Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer’s disease, J Biol Chem 278, 13905–13911.

    Article  PubMed  CAS  Google Scholar 

  39. Doig, A. J., Hughes, E., Burke, R. M., Su, T. J., Heenan, R. K., and Lu, J. (2002) Inhibition of toxicity and protofibril formation in the amyloid-beta peptide beta(25-35) using N-methylated derivatives, Biochem Soc Trans 30, 537–542.

    Article  PubMed  CAS  Google Scholar 

  40. Frokjaer, S., and Otzen, D. E. (2005) Protein drug stability: a formulation challenge, Nat Rev Drug Discov 4, 298–306.

    Article  PubMed  CAS  Google Scholar 

  41. Raineri, E., Ribeca, P., Serrano, L., and Maier, T. A more precise characterization of chaperonin substrates, Bioinformatics 26, 1685–1689.

    Google Scholar 

  42. Morshedi, D., Ebrahim-Habibi, A., Moosavi-Movahedi, A. A., and Nemat-Gorgani, M. Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation, Biochim Biophys Acta 1804, 714–722.

    Google Scholar 

  43. Torrent, M., Odorizzi, F., Nogués, M., and Boix, E. (2010) Eosinophil Cationic Protein Aggregation: Identification of an N-Terminus Amyloid Prone Region, Biomacromolecules 11, 1983–1990.

    Google Scholar 

  44. Tarakanov, A. O., Fuxe, K. G., Agnati, L. F., and Goncharova, L. B. (2009) Possible role of receptor heteromers in multiple sclerosis, J Neural Transm 116, 989–994.

    Article  PubMed  CAS  Google Scholar 

  45. Hardy, G. G., Allen, R. C., Toh, E., Long, M., Brown, P. J., Cole-Tobian, J. L., and Brun, Y. V. A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole, Mol Microbiol 76, 409–427.

    Google Scholar 

  46. Agnati, L. F., Leo, G., Genedani, S., Piron, L., Rivera, A., Guidolin, D., and Fuxe, K. (2009) Common key-signals in learning and neurodegeneration: focus on excito-amino acids, beta-amyloid peptides and alpha-synuclein, J Neural Transm 116, 953–974.

    Article  PubMed  CAS  Google Scholar 

  47. Monsellier, E., Ramazzotti, M., de Laureto, P. P., Tartaglia, G. G., Taddei, N., Fontana, A., Vendruscolo, M., and Chiti, F. (2007) The distribution of residues in a polypeptide sequence is a determinant of aggregation optimized by evolution, Biophys J 93, 4382–4391.

    Article  PubMed  CAS  Google Scholar 

  48. Routledge, K. E., Tartaglia, G. G., Platt, G. W., Vendruscolo, M., and Radford, S. E. (2009) Competition between intramolecular and intermolecular interactions in an amyloid-forming protein, J Mol Biol 389, 776–786.

    Article  PubMed  CAS  Google Scholar 

  49. Fernandez, D., Boix, E., Pallares, I., Aviles, F. X., and Vendrell, J. Analysis of a new crystal form of procarboxypeptidase B: further insights into the catalytic mechanism, Biopolymers 93, 178–185.

    Google Scholar 

  50. FASTA format description: http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml.

  51. Brouwers, N., Sleegers, K., and Van Broeckhoven, C. (2008) Molecular genetics of Alzheimer’s disease: an update, Ann Med 40, 562–583.

    Article  PubMed  CAS  Google Scholar 

  52. Li, S. C., Goto, N. K., Williams, K. A., and Deber, C. M. (1996) Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment, Proc Natl Acad Sci U S A 93, 6676–6681.

    Article  PubMed  CAS  Google Scholar 

  53. Poduslo, J. F., Curran, G. L., Kumar, A., Frangione, B., and Soto, C. (1999) Beta-sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood-brain barrier permeability and resistance to proteolytic degradation in plasma, J Neurobiol 39, 371–382.

    Article  PubMed  CAS  Google Scholar 

  54. Sabate, R., Espargaro, A., de Groot, N. S., Valle-Delgado, J. J., Fernandez-Busquets, X., and Ventura, S. (2010) The Role of Protein Sequence and Amino Acid Composition in Amyloid Formation: Scrambling and Reading Backwards IAPP Amyloid Fibrils, J Mol Biol 404, 337–352.

    Google Scholar 

  55. Rousseau, F., Schymkowitz, J., and Serrano, L. (2006) Protein aggregation and amyloidosis: confusion of the kinds?, Curr Opin Struct Biol 16, 118–126.

    Article  PubMed  CAS  Google Scholar 

  56. Chiti, F., and Dobson, C. M. (2009) Amyloid formation by globular proteins under native conditions, Nat Chem Biol 5, 15–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowldgements

This work was supported by grants BFU2010-14901 from Ministerio de Ciencia e Innovación (Spain) and 2009-SGR 760 from AGAUR (Generalitat de Catalunya). SV has been granted an ICREA ACADEMIA award (ICREA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de Groot, N.S., Castillo, V., Graña-Montes, R., Ventura, S. (2012). AGGRESCAN: Method, Application, and Perspectives for Drug Design. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics