Skip to main content

Measuring Rates of Ubiquitin Chain Formation as a Functional Readout of Ligase Activity

  • Protocol
  • First Online:
Book cover Ubiquitin Family Modifiers and the Proteasome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

Specificity within the pathways of ubiquitin conjugation are defined by protein-binding affinities among the components. Enzyme kinetics provides a facile high-resolution experimental approach for quantitating such protein-binding affinities and yields additional mechanistic insights into the transition state of the enzyme-catalyzed reaction. Most ubiquitin ligases form free polyubiquitin chains at a slow rate in the absence of their cognate target protein as a normal step in their overall catalytic cycle. Rates of polyubiquitin chain formation can, therefore, be used as a reporter function kinetically to characterize binding interactions within the ligation pathway. We describe experimental approaches for: (1) precisely quantitating functional E1 and E2 concentrations by their stoichiometric formation of 125I-ubiquitin thiolester; (2) semiquantitative screens to define the cognate E2(s) for ubiquitin ligases based on their ability to support polyubiquitin chain formation; (3) initial rate studies to quantify K m and k cat as a measure of the ability of specific E2-ubiquitin thiolester substrates to support ligase-catalyzed polyubiquitin chain formation; and (4) an isopeptidase T-based technique for distinguishing between free and conjugated polyubiquitin chains formed in the functional assays. These kinetic methods provide mechanistic insights that are otherwise inaccessible by other experimental approaches and yield a precision in characterizing protein interactions that exceeds that of other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haas AL, Siepmann TJ (1997) Pathways of ubiquitin conjugation. Faseb J 11:1257–1268

    PubMed  CAS  Google Scholar 

  2. Haas AL, Warms JV, Hershko A, Rose IA (1982) Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257:2543–2548

    CAS  Google Scholar 

  3. Haas AL, Rose IA (1982) The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J Biol Chem 257:10329–10337

    CAS  Google Scholar 

  4. Streich FC, Haas AL (2010) Activation of ubiquitin and ubiquitin-like proteins. Subcell. Biochem. 54: 1–16

    Article  PubMed  CAS  Google Scholar 

  5. Pickart CM (2001) Mechanism underlying ubiquitination. Annu Rev Biochem 70: 503–533

    Article  PubMed  CAS  Google Scholar 

  6. Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764

    Article  PubMed  CAS  Google Scholar 

  7. Ying M, Zhan Z, Wang W, Chen D (2009) Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid. Gene 447:72–85

    Article  PubMed  CAS  Google Scholar 

  8. Bohnsack RN, Haas AL (2003) Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J Biol Chem 278:26823–26830

    Article  PubMed  CAS  Google Scholar 

  9. Huang L, Kinnucan E, Wang G, et al (1999) Structure of an E6AP-UbcH7 complex: Insights into ubiquitination by the E2-E3 enzyme cascade. Science 286:1321–1326

    Article  PubMed  CAS  Google Scholar 

  10. Zheng N, Wang P, Jeffrey PD, Pavletich NP (2001) Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539

    Article  Google Scholar 

  11. Haas AL (2006) ISG15-dependent regulation. In: Mayer RJ, Ciechanover A, Rechsteiner M (ed) Protein Degradation. Wiley-VCH Verlag, Weinheim, Germany, Chapt. 5, pp. 103–131

    Google Scholar 

  12. Durfee LA, Kelley ML, Huibregtse JM (2008) The basis for selective E1-E2 interactions in the ISG15 conjugation system. J Biol Chem 283:23895–23902

    Article  PubMed  CAS  Google Scholar 

  13. Kumar S, Kao WH, Howley PM (1997) Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. J Biol Chem 272:13548–13554

    Article  PubMed  CAS  Google Scholar 

  14. Moynihan TP, Ardley HC, Nuber U, et al (1999) The ubiquitin-conjugating enzymes UbcH7 and UbcH8 interact with RING finger/IBR motif-containing domains of HHARI and H7-AP1. J Biol Chem 274:30963–30968

    Article  PubMed  CAS  Google Scholar 

  15. Zhao C, Beaudenon SL, Kelley ML, et al (2004) The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-α/β-induced ubiquitin-like protein. Proc Natl Acad Sci USA 101:7578–7582

    Article  PubMed  CAS  Google Scholar 

  16. Kim KI, Giannakopoulos NV, Virgin HW, Zhang DE (2004) Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation. Mol Cell Biol 24:9592–9600

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Y, Gao J, Chung KK, et al (2005) Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 97:13354–13359

    Article  Google Scholar 

  18. Tokgöz Z, Bohnsack RN, Haas AL (2006) Pleiotropic effects of ATP•Mg2+ binding in the catalytic cycle of ubiquitin activating enzyme. J Biol Chem 281:14729–14737

    Article  PubMed  Google Scholar 

  19. Huang DT, Paydar A, Zhuang M, et al (2005) Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8’s E1. Mol Cell 17:341–350

    Article  PubMed  CAS  Google Scholar 

  20. Petroski MD, Deshaies RJ (2005) Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123:1107–1120

    Article  PubMed  CAS  Google Scholar 

  21. Yunus AA, Lima CD (2009) Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation. Methods Mol Biol 497:167–186

    Article  PubMed  CAS  Google Scholar 

  22. Baboshina OV, Crinelli R, Siepmann TJ, Haas AL (2001) N-end rule specificity within the ubiquitin/proteasome pathway is not an affinity effect. J Biol Chem 276:39428–39437

    Article  PubMed  CAS  Google Scholar 

  23. Lawson TG, Sweep ME, Schlax PE, et al (2001) Kinetic analysis of the conjugation of ubiquitin to picornavirus 3c proteases catalyzed by the mammalian ubiquitin-protein ligase E3α. J Biol Chem 276:39629–39637

    Article  PubMed  CAS  Google Scholar 

  24. Siepmann TJ, Bohnsack RN, Tokgöz Z, et al (2003) Protein interactions within the N-end rule ubiquitin ligation pathway. J Biol Chem 278:9448–9457

    Article  PubMed  CAS  Google Scholar 

  25. Kumar B, Lecompte KG, Klein JM, Haas AL (2010) Ser120 of Ubc2/Rad6 regulates ubiquitin-dependent N-end rule targeting by E3α/Ubr1. J Biol Chem 285:41300–41309

    Article  PubMed  CAS  Google Scholar 

  26. Wang M, Pickart CM (2005) Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. Embo J 24:4324–4333

    Article  PubMed  CAS  Google Scholar 

  27. Wang M, Cheng D, Peng J, Pickart CM (2006) Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. Embo J 25:1710–1719

    Article  PubMed  CAS  Google Scholar 

  28. Li W, Tu D, Brunger AT, Ye Y (2007) A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446:333–337

    Article  PubMed  CAS  Google Scholar 

  29. Haas AL (2005) Purification of E1 and E1-like enzymes. Methods Mol Biol 301:23–35

    PubMed  CAS  Google Scholar 

  30. Haas AL, Wilkinson KD (1985) The large scale purification of ubiquitin from human erythrocytes. Prep Biochem 15:49–60

    Article  PubMed  CAS  Google Scholar 

  31. Haas AL, Bright PM (1988) The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes. J Biol Chem 263:13258–13267

    PubMed  CAS  Google Scholar 

  32. Wilkinson KD, Tashayev VL, O’Connor LB, et al (1995) Metabolism of the polyubiquitin degradation signal- Structure, mechanism, and role of isopeptidase T. Biochemistry 34:14535–14546

    Article  PubMed  CAS  Google Scholar 

  33. Haas AL, Warms JV, Rose IA (1983) Ubiquitin adenylate: Structure and role in ubiquitin activation. Biochemistry 22:4388–4394

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Patrick Connick for providing the data presented in Fig. 3. This work was supported by National Institutes of Health grant GM034009 (to A.L.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur L. Haas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ronchi, V.P., Haas, A.L. (2012). Measuring Rates of Ubiquitin Chain Formation as a Functional Readout of Ligase Activity. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics