Skip to main content

Caenorhabditis elegans as a Model in Developmental Toxicology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 889))

Abstract

A number of practical advantages have made the nematode Caenorhabditis elegans a useful model for genetic and developmental biological research. These same advantages, along with conservation of disease and stress response pathways, availability of mutant and transgenic strains, and wealth of biological information, have led to the increased use of C. elegans in toxicological studies. Although the potential to study the mechanisms of developmental toxicology in C. elegans is promising, embryonic and larval growth tests to identify compounds that affect the nematode have remained the primary use of C. elegans in developmental toxicology. Here, we describe a C. elegans larval growth and development assay for medium- and high-throughput screening using the COPAS Biosort flow cytometer and provide descriptions of the data and subsequent analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of nematode, Caenorhabditis elegans. Dev Biol 56:110–156

    Article  PubMed  CAS  Google Scholar 

  2. Hope IA (1999) C. elegans: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  3. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  4. Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  5. Wood WB (1988) The nematode Caenor­habditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  6. Strange K (2006) C. elegans: methods and applications. Humana, Totowa, NJ

    Google Scholar 

  7. http://www.wormbase.org.

  8. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28

    Article  PubMed  CAS  Google Scholar 

  9. Helmcke KJ, Avila DS, Aschner M (2010) Utility of Caenorhabditis elegans in high throughput neurotoxicological research. Neurotoxicol Teratol 32:62–67

    Article  PubMed  CAS  Google Scholar 

  10. Boyd WA, Smith MV, Kissling GE, Freedman JH (2010) Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicol Teratol 32:68–73

    Article  PubMed  CAS  Google Scholar 

  11. Boyd WA, McBride SJ, Rice JR, Snyder DW, Freedman JH (2010) A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol 245:153–159

    Article  PubMed  CAS  Google Scholar 

  12. Boyd WA, McBride SJ, Freedman JH (2007) Effects of genetic mutations and chemical exposures on Caenorhabditis elegans feeding: evaluation of a novel, high-throughput screening assay. PLoS One 2:e1259

    Article  PubMed  Google Scholar 

  13. Allard P, Colaiacovo MP (2010) Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc Natl Acad Sci USA 107:20405–20410

    Article  PubMed  CAS  Google Scholar 

  14. Leung MC, Goldstone JV, Boyd WA, Freedman JH, Meyer JN (2010) Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin b-1 but not benzo[a]pyrene in vivo. Toxicol Sci 118:444–453

    Article  PubMed  CAS  Google Scholar 

  15. Swain S, Wren JF, Stuerzenbaum SR, Kille P, Morgan AJ, Jager T, Jonker MJ, Hankard PK, Svendsen C, Owen J, Hedley BA, Blaxter M, Spurgeon DJ (2010) Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans. BMC Syst Biol 4:32

    Article  PubMed  Google Scholar 

  16. Wren JF, Kille P, Spurgeon DJ, Swain S, Sturzenbaum SR, Jager T (2011) Application of physiologically based modelling and transcriptomics to probe the systems toxicology of aldicarb for Caenorhabditis elegans (Maupas 1900). Ecotoxicology 20:397–408

    Article  PubMed  CAS  Google Scholar 

  17. Hood RD (2006) Developmental and reproductive toxicology: a practical approach. CRC, Boca Raton, FL

    Google Scholar 

  18. Brandt R, Gergou A, Wacker I, Fath T, Hutter H (2009) A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging 30:22–33

    Article  PubMed  CAS  Google Scholar 

  19. VanDuyn N, Settivari R, Wong G, Nass R (2010) SKN-1/NRF2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol Sci 118:613–624

    Article  PubMed  CAS  Google Scholar 

  20. Boyd WA, Smith MV, Kissling GE, Rice JR, Snyder DW, Portier CJ, Freedman JH (2009) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS One 4:e7024

    Article  PubMed  Google Scholar 

  21. Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–150

    Article  PubMed  CAS  Google Scholar 

  22. Smith MV, Boyd WA, Kissling GE, Rice JR, Snyder DW, Portier CJ, Freedman JH (2009) A discrete time model for the analysis of medium-throughput C. elegans growth data. PLoS One 4:e7018

    Article  PubMed  Google Scholar 

  23. Lewis JA, Fleming JT (1995) Basic culture methods. In: Epstein HF, Shakes DC (eds) Caenorhabditis elegans: modern biological analysis of an organism. Academic, San Diego, CA, pp 3–29

    Chapter  Google Scholar 

  24. Pulak R (2006) Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. Methods Mol Biol 351:275–286

    PubMed  Google Scholar 

  25. http://niehs.nih.gov/research/atniehs/labs/bmsb/wormtox/index.cfm.

  26. Boyd WA, Crocker TL, Rodriguez AM, Leung MC, Lehmann DW, Freedman JH, Van Houten B, Meyer JN (2010) Nucleotide excision repair genes are expressed at low levels and are not detectably inducible in Caenorhabditis elegans somatic tissues, but their function is required for normal adult life after UVC exposure. Mutat Res 683:57–67

    Article  PubMed  CAS  Google Scholar 

  27. Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM, Reif DM, Rotroff DM, Shah I, Richard AM, Dix DJ (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118:485–492

    Article  PubMed  CAS  Google Scholar 

  28. Knudsen TB, Houck KA, Sipes N, Singh AV, Judson R, Martin MT, Weissman A, Kleinstreuer N, Mortensen HM, Reif D, Rabinowitz JR, Setzer RW, Richard AM, Dix DJ, Kavlock RJ (2011) Activity profiles of 309 ToxCast chemicals evaluated across 292 biochemical targets. Toxicology 282:1–15

    Article  PubMed  CAS  Google Scholar 

  29. Collins FS, Gray GM, Bucher JR (2008) Toxicology—Transforming environmental health protection. Science 319:906–907

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Julie R. Rice, Daniel W. Snyder, and Paul E. Dunlap for technical assistance during the development and performance of C. elegans growth assays. We also thank Sandra J. McBride and Grace E. Kissling for assistance in the development of statistical analyses and mathematical modeling tools. This work was supported in part by the National Toxicology Program and by the Intramural Research Program of the National Institute of Environmental Health Sciences, National Institutes of Health (Z01ES102046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Freedman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boyd, W.A., Smith, M.V., Freedman, J.H. (2012). Caenorhabditis elegans as a Model in Developmental Toxicology. In: Harris, C., Hansen, J. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 889. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-867-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-867-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-866-5

  • Online ISBN: 978-1-61779-867-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics