Skip to main content

The Mouse Digit Tip: From Wound Healing to Regeneration

  • Protocol
  • First Online:
Book cover Wound Regeneration and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1037))

Abstract

A challenge to the study of regeneration is determining at what point the processes of wound healing and regeneration diverge. The mouse displays level-specific regeneration responses. An amputation through the distal third of the terminal phalanx will prompt a regeneration response and result in a new digit tip that mimics the morphology of the lost digit tip. Conversely, an amputation through the distal third of the intermediate phalanx initiates a wound healing and scarring response. The mouse, therefore, provides a model for studying the transition between wound healing and regeneration in the same animal. This chapter details the methods used in the study of mammalian digit regeneration, including a method to introduce exogenous protein into the mouse digit amputation model via microcarrier beads and methods for analysis of bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dinsmore CE (ed) (1991) A history of regeneration research: milestones in the evolution of a science. Cambridge University Press, Cambridge

    Google Scholar 

  2. Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Stocum DL, Cameron JA (2011) Looking proximally and distally: 100 years of limb regeneration and beyond. Dev Dyn 240:943–968

    Article  PubMed  Google Scholar 

  4. McKim LH (1932) Regeneration of the distal phalanx. Can Med Assoc J 26:549–550

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Douglas BS (1972) Conservative management of guillotine amputation of the finger in children. Aust Paediatr J 8:86–89

    CAS  PubMed  Google Scholar 

  6. Allen MJ (1980) Conservative management of finger tip injuries in adults. Hand 12:257–265

    Article  CAS  PubMed  Google Scholar 

  7. Han M, Yang X, Lee J, Allan CH, Muneoka K (2008) Development and regeneration of the neonatal digit tip in mice. Dev Biol 315:125–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Reginelli AD, Wang YQ, Sassoon D, Muneoka K (1995) Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development 121:1065–1076

    CAS  PubMed  Google Scholar 

  9. Neufeld DA, Zhao W (1995) Bone regrowth after digit tip amputation in mice is equivalent in adults and neonates. Wound Repair Regen 3:461–466

    Article  CAS  PubMed  Google Scholar 

  10. Borgens RB (1982) Mice regrow the tips of their foretoes. Science 217:747–750

    Article  CAS  PubMed  Google Scholar 

  11. Clark RA (ed) (1995) The molecular and cellular biology of wound repair, 2nd edn. Plenum Press, New York

    Google Scholar 

  12. Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K (2011) Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol 350:301–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Han M, Yang X, Farrington JE, Muneoka K (2003) Digit regeneration is regulated by Msx1 and BMP4 in fetal mice. Development 130:5123–5132

    Article  CAS  PubMed  Google Scholar 

  14. Yu L, Han M, Yan M, Lee EC, Lee J, Muneoka K (2010) BMP signaling induces digit regeneration in neonatal mice. Development 137:551–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ros MA, Lopez-Martinez A, Simandl BK, Rodriguez C, Izpisua Belmonte JC, Dahn R, Fallon JF (1996) The limb field mesoderm determines initial limb bud anteroposterior asymmetry and budding independent of sonic hedgehog or apical ectodermal gene expressions. Development 122:2319–2330

    CAS  PubMed  Google Scholar 

  16. Ganan Y, Macias D, Duterque-Coquillaud M, Ros MA, Hurle JM (1996) Role of TGF beta s and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development 122:2349–2357

    CAS  PubMed  Google Scholar 

  17. Ferguson CM, Schwarz EM, Puzas JE, Zuscik MJ, Drissi H, O'Keefe RJ (2004) Transforming growth factor-beta1 induced alteration of skeletal morphogenesis in vivo. J Orthop Res 22:687–696

    Article  CAS  PubMed  Google Scholar 

  18. Subramanian S (1984) Dye-ligand affinity chromatography: the interaction of Cibacron Blue F3GA with proteins and enzymes. CRC Crit Rev Biochem 16:169–205

    Article  CAS  PubMed  Google Scholar 

  19. Fallon JF, Lopez A, Ros MA, Savage MP, Olwin BB, Simandl BK (1994) FGF-2: apical ectodermal ridge growth signal for chick limb development. Science 264:104–107

    Article  CAS  PubMed  Google Scholar 

  20. Schreiber AB, Winkler ME, Derynck R (1986) Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 232:1250–1253

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Muneoka K (1999) Cell migration and chick limb development: chemotactic action of FGF-4 and the AER. Dev Biol 211:335–347

    Article  CAS  PubMed  Google Scholar 

  22. Brady J (1965) A simple technique for making very fine, durable dissecting needles by sharpening tungsten wire electrolytically. Bull World Health Organ 32:143–144

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Erben RG (2003) Bone-labeling techniques. In: An YH, Martin KL (eds) Handbook of histology methods for bone and cartilage. Humana Press Inc., Totowa, pp 99–117

    Google Scholar 

  24. Neufeld DA, Mohammad KS (2000) Fluorescent bone viewed through toenails of living animals: a method to observe bone regrowth. Biotech Histochem 75:259–263

    Article  CAS  PubMed  Google Scholar 

  25. Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079

    Article  PubMed Central  PubMed  Google Scholar 

  26. Schmid B, Schindelin J, Cardona A, Longair M, Heisenberg M (2010) A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics 11:274

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Simkin, J., Han, M., Yu, L., Yan, M., Muneoka, K. (2013). The Mouse Digit Tip: From Wound Healing to Regeneration. In: Gourdie, R., Myers, T. (eds) Wound Regeneration and Repair. Methods in Molecular Biology, vol 1037. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-505-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-505-7_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-504-0

  • Online ISBN: 978-1-62703-505-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics