Skip to main content

Single-Molecule Resolution Fluorescent In Situ Hybridization (smFISH) in the Yeast S. cerevisiae

  • Protocol
  • First Online:
Book cover Imaging Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1042))

Abstract

Regulating gene expression is a major task for all cellular systems. RNA production and degradation plays a critical role in this process and accurately measuring cellular mRNA levels is essential to understanding gene expression regulation. Classical biochemical assays that study gene expression rely on extracting RNAs from large populations of cells, taking them out of their native context and thereby losing spatial information as well as cell-to-cell variability. In this chapter, we describe a fluorescent in situ hybridization (FISH) technique that circumvents this problem by detecting single RNAs in single cells. The technique employs multiple single-stranded short DNA probes fluorescently labeled with organic dyes that hybridize to target RNAs in fixed cells, allowing quantification and localization of RNAs at the single-cell level and at single-molecule resolution. The protocol described here has been optimized for the yeast S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holstege FC, Jennings EG, Wyrick JJ et al (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728

    Article  PubMed  CAS  Google Scholar 

  2. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  PubMed  CAS  Google Scholar 

  3. Elowitz M, Levine A, Siggia E, Swain P (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  PubMed  CAS  Google Scholar 

  4. Larson DR, Singer RH, Zenklusen D (2009) A single molecule view of gene expression. Trends Cell Biol 19:630–637. doi:10.1016/j.tcb.2009.08.008

    Article  PubMed  CAS  Google Scholar 

  5. Locke J, Elowitz M (2009) Using movies to analyse gene circuit dynamics in single cells. Nat Rev Microbiol 7:383–392

    Article  PubMed  CAS  Google Scholar 

  6. Femino A, Fay F, Fogarty K, Singer R (1998) Visualization of single RNA transcripts in situ. Science 280:585–590

    Article  PubMed  CAS  Google Scholar 

  7. Itzkovitz S, van Oudenaarden A (2011) Validating transcripts with probes and imaging technology. Nat Methods 8:S12–S19. doi:10.1038/nmeth.1573

    Article  PubMed  CAS  Google Scholar 

  8. Raj A, Peskin CS, Tranchina D et al (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:e309. doi:10.1371/journal.pbio.0040309.sv002

    Article  PubMed  Google Scholar 

  9. Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918. doi:10.1038/nature08781

    Article  PubMed  CAS  Google Scholar 

  10. Raj A, van den Bogaard P, Rifkin SA et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879. doi:10.1038/nmeth.1253

    Article  PubMed  CAS  Google Scholar 

  11. Trcek T, Larson DR, Moldón A et al (2011) Single-molecule mRNA decay measurements reveal promoter-regulated mrna stability in yeast. Cell 147:1484–1497. doi:10.1016/j.cell.2011.11.051

    Article  PubMed  CAS  Google Scholar 

  12. Vargas DY, Shah K, Batish M et al (2011) Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147:1054–1065. doi:10.1016/j.cell.2011.10.024

    Article  PubMed  CAS  Google Scholar 

  13. Zenklusen D, Larson DR, Singer RH (2008) Single-RNA counting reveals alternative modes of gene expression in yeast. Nat Struct Mol Biol 15:1263–1271. doi:10.1038/nsmb.1514

    Article  PubMed  CAS  Google Scholar 

  14. Zenklusen D, Singer RH (2010) Analyzing mRNA expression using single mRNA resolution fluorescent in situ hybridization. Methods Enzymol 470:641–659. doi:10.1016/S0076-6879(10)70026-4

    Article  PubMed  CAS  Google Scholar 

  15. Silverman SJ, Petti AA, Slavov N et al (2010) Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate. Proc Natl Acad Sci 107:6946–6951. doi:10.1073/pnas.s1002422107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marlene Oeffinger as well as members of the Zenklusen laboratory for comments and discussions on the manuscript. The laboratory of Daniel Zenklusen is supported by the Canadian Institutes of Health Research (MOP-BMB-232642), the Natural Sciences and Engineering Research Council of Canada, the Fonds de recherche Santé Québec, and the Canada Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rahman, S., Zenklusen, D. (2013). Single-Molecule Resolution Fluorescent In Situ Hybridization (smFISH) in the Yeast S. cerevisiae . In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 1042. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-526-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-526-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-525-5

  • Online ISBN: 978-1-62703-526-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics