Skip to main content

The Mutate-and-Map Protocol for Inferring Base Pairs in Structured RNA

  • Protocol
  • First Online:
RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1086))

Abstract

Chemical mapping is a widespread technique for structural analysis of nucleic acids in which a molecule’s reactivity to different probes is quantified at single nucleotide resolution and used to constrain structural modeling. This experimental framework has been extensively revisited in the past decade with new strategies for high-throughput readouts, chemical modification, and rapid data analysis. Recently, we have coupled the technique to high-throughput mutagenesis. Point mutations of a base paired nucleotide can lead to exposure of not only that nucleotide but also its interaction partner. Systematically carrying out the mutation and mapping for the entire system gives an experimental approximation of the molecule’s “contact map.” Here, we give our in-house protocol for this “mutate-and-map” (M2) strategy, based on 96-well capillary electrophoresis, and we provide practical tips on interpreting the data to infer nucleic acid structure.

Pablo Cordero and Wipapat Kladwang contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandal M, Lee M, Barrick JE et al (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279

    Article  PubMed  CAS  Google Scholar 

  2. Kulshina N, Baird NJ, Ferre-D’Amare AR (2009) Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat Struct Mol Biol 16:1212–1217

    Article  PubMed  CAS  Google Scholar 

  3. Gesteland RF, Cech TR, Atkins JF (2006) The RNA World, 3rd edn. CSHL Press, Cold Spring Harbor

    Google Scholar 

  4. Leontis NB, Westhof E (1998) The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA 4:1134–1153

    Article  PubMed  CAS  Google Scholar 

  5. Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315–326

    Article  PubMed  CAS  Google Scholar 

  6. Lukavsky PJ, Kim I, Otto GA et al (2003) Structure of HCV IRES domain II determined by NMR. Nat Struct Biol 10:1033–1038

    Article  PubMed  CAS  Google Scholar 

  7. Brostoff SW, Ingram VM (1967) Chemical modification of yeast alanine-tRNA with a radioactive carbodiimide. Science 158:666–669

    Article  PubMed  CAS  Google Scholar 

  8. Moazed D, Stern S, Noller HF (1986) Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol 187:399–416

    Article  PubMed  CAS  Google Scholar 

  9. Cordero P, Kladwang W, VanLang CC et al (2012) Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry 51:7037–7039

    Article  PubMed  CAS  Google Scholar 

  10. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616

    Article  PubMed  CAS  Google Scholar 

  11. Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67

    Article  PubMed  CAS  Google Scholar 

  12. Lucks JB, Mortimer SA, Trapnell C et al (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci USA 108:11063–11068

    Article  PubMed  CAS  Google Scholar 

  13. Sood VD, Beattie TL, Collins RA (1998) Identification of phosphate groups involved in metal binding and tertiary interactions in the core of the Neurospora VS ribozyme. J Mol Biol 282:741–750

    Article  PubMed  CAS  Google Scholar 

  14. Rhee Y, Valentine MR, Termini J (1995) Oxidative base damage in RNA detected by reverse transcriptase. Nucleic Acids Res 23:3275–3282

    Article  PubMed  CAS  Google Scholar 

  15. Chow CS, Cunningham PR, Lee K et al (2002) Photoinduced cleavage by a rhodium complex at G.U mismatches and exposed guanines in large and small RNAs. Biochimie 84:859–868

    Article  PubMed  CAS  Google Scholar 

  16. Kertesz M, Wan Y, Mazor E et al (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107

    Article  PubMed  CAS  Google Scholar 

  17. Underwood JG, Uzilov AV, Katzman S et al (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7:995–1001

    Article  PubMed  CAS  Google Scholar 

  18. Kladwang W, Das R (2010) A mutate-and-map strategy for inferring base pairs in structured nucleic acids: proof of concept on a DNA/RNA helix. Biochemistry 49:7414–7416

    Article  PubMed  CAS  Google Scholar 

  19. Wells SE, Hughes JM, Igel AH et al (2000) Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol 318:479–493

    Article  PubMed  CAS  Google Scholar 

  20. Tijerina P, Mohr S, Russell R (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2:2608–2623

    Article  PubMed  CAS  Google Scholar 

  21. Spitale RC, Crisalli P, Flynn RA et al (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9:18–20

    Article  PubMed  CAS  Google Scholar 

  22. Kladwang W, VanLang CC, Cordero P et al (2011) Understanding the errors of SHAPE-directed RNA structure modeling. Biochemistry 50:8049–8056

    Article  PubMed  CAS  Google Scholar 

  23. Washietl S, Hofacker IL, Stadler PF et al (2012) RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res 40:4261–4272

    Article  PubMed  CAS  Google Scholar 

  24. Kladwang W, Cordero P, Das R (2011) A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA. RNA 17:522–534

    Article  PubMed  CAS  Google Scholar 

  25. Kladwang W, VanLang CC, Cordero P et al (2011) A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat Chem 3:954–962

    Article  PubMed  CAS  Google Scholar 

  26. Mathews DH, Disney MD, Childs JL et al (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101:7287–7292

    Article  PubMed  CAS  Google Scholar 

  27. Mortimer SA, Weeks KM (2007) A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 129:4144–4145

    Article  PubMed  CAS  Google Scholar 

  28. Yoon S, Kim J, Hum J et al (2011) HiTRACE: high-throughput robust analysis for capillary electrophoresis. Bioinformatics 27:1798–1805

    Article  PubMed  CAS  Google Scholar 

  29. Vasa SM, Guex N, Wilkinson KA et al (2008) ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 14:1979–1990

    Article  PubMed  CAS  Google Scholar 

  30. Mitra S, Shcherbakova IV, Altman RB et al (2008) High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res 36:e63

    Article  PubMed  Google Scholar 

  31. Cordero P, Lucks JB, Das R (2012) An RNA Mapping DataBase for curating RNA structure mapping experiments. Bioinformatics 28:3006–3008

    Article  PubMed  CAS  Google Scholar 

  32. Rocca-Serra P, Bellaousov S, Birmingham A et al (2011) Sharing and archiving nucleic acid structure mapping data. RNA 17:1204–1212

    Article  PubMed  CAS  Google Scholar 

  33. Rydzanicz R, Zhao XS, Johnson PE (2005) Assembly PCR oligo maker: a tool for designing oligodeoxynucleotides for constructing long DNA molecules for RNA production. Nucleic Acids Res 33:W521–W525

    Article  PubMed  CAS  Google Scholar 

  34. Thachuk C, Condon A (2007) On the design of oligos for gene synthesis. Paper presented at the IEEE 7th international symposium on bioinformatics and bioengineering, Cambridge, Boston, USA, pp 123–130. IEEE

    Google Scholar 

Download references

Acknowledgements

We thank B. Alford, F. Ortega, A. Becka, T. Mann, and S. Tian for comments on the manuscript. This work is supported by the Burroughs-Wellcome Foundation (CASI to R.D.), a CONACyT fellowship (to P.C.), and the National Institutes of Health (T32 HG000044 to C.C.V. and R01 GM102519 to R.D.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cordero, P., Kladwang, W., VanLang, C.C., Das, R. (2014). The Mutate-and-Map Protocol for Inferring Base Pairs in Structured RNA. In: Waldsich, C. (eds) RNA Folding. Methods in Molecular Biology, vol 1086. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-667-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-667-2_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-666-5

  • Online ISBN: 978-1-62703-667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics