Skip to main content

Purification of Specific Chromatin Domains from Single-Copy Gene Loci in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Book cover Functional Analysis of DNA and Chromatin

Abstract

Most methods currently available for the analysis of chromatin in vivo rely on a priori knowledge of putative chromatin components or their posttranslational modification state. The isolation of defined native chromosomal regions provides an attractive alternative to obtain a largely unbiased molecular description of chromatin. Here, we describe a strategy combining site-specific recombination at the chromosome with an efficient tandem affinity purification protocol to isolate a single-copy gene locus from the yeast Saccharomyces cerevisiae. The method allows robust enrichment of a targeted chromatin domain, making it amenable to compositional, structural, and biochemical analyses. This technique appears to be suitable to obtain a detailed description of chromatin composition and specific posttranslational histone modification state at virtually any genomic locus in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higashinakagawa T, Wahn H, Reeder RH (1977) Isolation of ribosomal gene chromatin. Dev Biol 55:375–386

    Article  PubMed  CAS  Google Scholar 

  2. Zhang XY, Hörz W (1982) Analysis of highly purified satellite DNA containing chromatin from the mouse. Nucleic Acids Res 10: 1481–1494

    Article  PubMed  CAS  Google Scholar 

  3. Workman JL, Langmore JP (1985) Nucleoprotein hybridization: a method for isolating specific genes as high molecular weight chromatin. Biochemistry 24:7486–7497

    Article  PubMed  CAS  Google Scholar 

  4. Boffa LC, Carpaneto EM, Allfrey VG (1995) Isolation of active genes containing CAG repeats by DNA strand invasion by a peptide nucleic acid. Proc Natl Acad Sci U S A 92: 1901–1905

    Article  PubMed  CAS  Google Scholar 

  5. Griesenbeck J, Boeger H, Strattan JS et al (2003) Affinity purification of specific chromatin segments from chromosomal loci in yeast. Mol Cell Biol 23:9275–9282

    Article  PubMed  CAS  Google Scholar 

  6. Simpson RT, Ducker CE, Diller JD et al (2004) Purification of native, defined chromatin segments. Methods Enzymol 375:158–170

    Article  PubMed  CAS  Google Scholar 

  7. Ghirlando R, Felsenfeld G (2008) Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn. J Mol Biol 376:1417–1425

    Article  PubMed  CAS  Google Scholar 

  8. Déjardin J, Kingston RE (2009) Purification of proteins associated with specific genomic loci. Cell 136:175–186

    Article  PubMed  Google Scholar 

  9. Unnikrishnan A, Gafken PR, Tsukiyama T (2010) Dynamic changes in histone acetylation regulate origins of DNA replication. Nat Struct Mol Biol 17:430–437

    Article  PubMed  CAS  Google Scholar 

  10. Antão JM, Mason JM, Déjardin J et al (2012) Protein landscape at Drosophila melanogaster telomere-associated sequence repeats. Mol Cell Biol 32:2170–2182

    Article  PubMed  Google Scholar 

  11. Byrum SD, Raman A, Taverna SD et al (2012) ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep 2: 198–205

    Article  PubMed  CAS  Google Scholar 

  12. Unnikrishnan A, Akiyoshi B, Biggins S et al (2012) An efficient purification system for native minichromosome from Saccharomyces cerevisiae. Methods Mol Biol 833:115–123

    Article  PubMed  CAS  Google Scholar 

  13. Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17: 1030–1032

    Article  PubMed  CAS  Google Scholar 

  14. Puig O, Caspary F, Rigaut G et al (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229

    Article  PubMed  CAS  Google Scholar 

  15. Brown CR, Mao C, Falkovskaia E et al (2013) Linking stochastic fluctuations in chromatin structure and gene expression, PLoS biology 11, e1001621

    Google Scholar 

  16. Hamperl S, Brown C, Perez-Fernandez J et al (in revision) Compositional and structural analysis of selected chromosomal domains from S. cerevisiae

    Google Scholar 

  17. Oeffinger M, Wei KE, Rogers R et al (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 4:951–956

    Article  PubMed  CAS  Google Scholar 

  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  19. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  20. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  PubMed  CAS  Google Scholar 

  21. Flick JS, Johnston M (1990) Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Mol Cell Biol 10:4757–4769

    PubMed  CAS  Google Scholar 

  22. Johnston M (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 51: 458–476

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant to H.T, P.M, and J.G. in the context of the SFB960 DFG research center. We thank all the members of the Institute of Biochemistry III for their constant support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Hamperl, S. et al. (2014). Purification of Specific Chromatin Domains from Single-Copy Gene Loci in Saccharomyces cerevisiae . In: Stockert, J., Espada, J., Blázquez-Castro, A. (eds) Functional Analysis of DNA and Chromatin. Methods in Molecular Biology, vol 1094. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-706-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-706-8_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-705-1

  • Online ISBN: 978-1-62703-706-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics