Skip to main content

Super-Resolution Fluorescence Microscopy Using Structured Illumination

  • Protocol
  • First Online:
Super-Resolution Microscopy Techniques in the Neurosciences

Part of the book series: Neuromethods ((NM,volume 86))

Abstract

The resolution of far-field fluorescence microscopy is limited by the Abbe diffraction limit. Making use of the moiré effect, structured illumination microscopy circumvents this limit by projecting fine patterns of light into the sample. From several diffraction limited raw images taken for different pattern positions and orientations, a high resolution image can be calculated. This way, linear structured illumination can enhance the resolution by a factor of about two. Employing nonlinearities such as fluorescence saturation, the resolution can be enhanced even further. In this article, a conceptual as well as a mathematical introduction to the technique is provided, as well as several examples of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimomura O, Johnson F, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  2. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. J Cell Comp Physiol 263:802

    CAS  Google Scholar 

  3. Tsien R (1988) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  Google Scholar 

  4. Amos WB, White JG, Fordham M (1987) Use of confocal imaging in the study of biological structures. Appl Opt 26:3239–3243

    Article  CAS  PubMed  Google Scholar 

  5. Neil MAA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22(24):1905–1907

    Article  CAS  PubMed  Google Scholar 

  6. Heintzmann R, Cremer C (1999) Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating. In: Proceedings of the Society of Photographic Instrumentation Engineers, vol 3568, pp 185–196, 1999

    Google Scholar 

  7. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198: 82–87

    Article  CAS  PubMed  Google Scholar 

  8. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  PubMed  Google Scholar 

  9. Betzig E, Patterson GH, Sougrat R, Lindwasser W, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313: 1642–1645

    Article  CAS  PubMed  Google Scholar 

  10. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Method 3:793–796

    Article  CAS  Google Scholar 

  11. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lukosz W (1966) Optical systems with resolving powers exceeding the classical limit. J Opt Soc Am 56:1463–1472

    Article  CAS  Google Scholar 

  13. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102:17565–17569

    Article  CAS  PubMed  Google Scholar 

  14. Heintzmann R, Gustafsson MGL (2009) Subdiffraction resolution in continuous samples. Nat Photon 3:363–364

    Article  Google Scholar 

  15. Hirvonen L (2008) Structured illumination microscopy using photoswitchable fluorescent proteins. PhD thesis, King’s College London, UK

    Google Scholar 

  16. Rego EH, Shao L, Macklin J, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MGL (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci USA 109:E135–E143

    Article  CAS  PubMed  Google Scholar 

  17. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy – a concept for optical resolution improvement. J Opt Soc Am A 19:1599–1609

    Article  Google Scholar 

  18. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102: 13081–13086

    Article  CAS  PubMed  Google Scholar 

  19. Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Heintzmann R (2003) Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron 34:283–291

    Article  PubMed  Google Scholar 

  21. Orieux F, Sepulveda E, Loriette V, Dubertret B, Olivo-Marin J-C (2012) Bayesian estimation for optimized structured illumination microscopy. IEEE Trans Image process 21: 601–614

    Article  PubMed  Google Scholar 

  22. Penrose R (1955) A generalized inverse for matrices. In: Proceedings of the Cambridge Philosophical Society, vol 51, pp 406–413, 1955

    Google Scholar 

  23. Wiener N (1949) Extrapolation, interpolation and smoothing of stationary time series with engineering applications. MIT Press, Cambridge; Wiley, New York; Chapman & Hall, London

    Google Scholar 

  24. Arigovindan M, Elnatan D, Fung J, Branlund E, Sedat J, Agard D (2012) High resolution restoration of 3D structures from extreme low dose widefield images. In: Focus on Microscopy 2012 abstract book, 2012

    Google Scholar 

  25. McCutchen CW (1964) Generalized aperture and the three-dimensional diffraction image. J Opt Soc Am 54(2):240–244

    Article  Google Scholar 

  26. Ewald PP (1969) Introduction to the dynamical theory of X-ray diffraction. Acta Crystallogr A 25(1):103–108

    Article  Google Scholar 

  27. Scherer WF, Syverton JT, Gey GO (1953) Studies on the propagation in vitro of poliomyelitis viruses IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97: 695–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Talbot HF (1836) Facts relating to optical science. Lond Edinb Philos Mag J Sci 9: 401–407

    Google Scholar 

  29. Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MGL (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci USA 109:5311–5315

    Article  CAS  PubMed  Google Scholar 

  30. Shao L, Isaac B, Uzawa S, Agard DA, Sedat JW, Gustafsson MGL (2008) I5S: Wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys J 94: 4971–4983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hell SW, Stelzer EHK (1992) Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt Commun 93:277–282

    Article  Google Scholar 

  32. Hell SW, Stelzer EHK (1992) Properties of a 4Pi-confocal fluorescence microscope. J Opt Soc Am A 9:2159–2166

    Article  Google Scholar 

  33. Gustafsson MGL, Agard DA, Sedat JW (1995) Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc SPIE 2412:147–156

    Article  Google Scholar 

  34. Gustafsson MGL, Agard DA, Sedat JW (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195:10–16

    Article  CAS  PubMed  Google Scholar 

  35. Graham FL, Smiley J (1977) Characteristics of a human cell line transformed by dna from human adenovirus type 5. J Gen Virol 36: 59–72

    Article  CAS  PubMed  Google Scholar 

  36. Schaefer LH, Schuster D, Schaffer J (2004) Structured illumination microscopy: Artefact analysis and reduction utilizing a parameter optimization approach. J Microsc 216(2): 165–174

    Article  CAS  PubMed  Google Scholar 

  37. Shroff SA, Fienup JR, Williams DR (2009) Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. J Opt Soc Am 26:413–424

    Article  Google Scholar 

  38. Wicker K (2010) Increasing resolution and light efficiency in fluorescence microscopy. PhD thesis, King’s College London, UK

    Google Scholar 

  39. Wicker K, Mandula O, Best G, Fiolka R, Heintzmann R (2013) Phase optimisation for structured illumination microscopy. Opt Express 21:2032–2049

    Article  PubMed  Google Scholar 

  40. Wicker K (2013) Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space. Opt Express 21:24692–24701

    Article  PubMed  Google Scholar 

  41. Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MGL (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Method 6:339–342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wicker, K. (2014). Super-Resolution Fluorescence Microscopy Using Structured Illumination. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics