Skip to main content

Past, Present, and Future of Neuronal Models In Vitro

  • Chapter
  • First Online:
In Vitro Neuronal Networks

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 22))

Abstract

Over the past century, robust methods were developed that enable the isolation, culture, and dynamic observation of mammalian neuronal networks in vitro. But even if neuronal culture cannot yet fully recapitulate the normal brain, the knowledge that has been acquired from these surrogate in vitro models is invaluable. Indeed, neuronal culture has continued to propel basic neuroscience research, proving that in vitro systems have legitimacy when it comes to studying either the healthy or diseased human brain. Furthermore, scientific advancement typically parallels technical refinements in the field. A pertinent example is that a collective drive in the field of neuroscience to better understand the development, organization, and emergent properties of neuronal networks is being facilitated by progressive advances in micro-electrode array (MEA) technology. In this chapter, we briefly review the emergence of neuronal cell culture as a technique, the current trends in human stem cell-based modeling, and the technologies used to monitor neuronal communication. We conclude by highlighting future prospects that are evolving specifically out of the combination of human neuronal models and MEA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin, N. D., & PaÅŸca, S. P. (2018). Building models of brain disorders with three-dimensional Organoids. Neuron, 100(2), 389–405.

    Article  CAS  PubMed  Google Scholar 

  • Ardhanareeswaran, K., Mariani, J., Coppola, G., Abyzov, A., & Vaccarino, F. M. (2017). Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nature Reviews. Neurology, 13(5), 265–278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Banker, G., & Goslin, K. (1988). Developments in neuronal cell culture. Nature, 336(6195), 185–186.

    Article  CAS  PubMed  Google Scholar 

  • Banker, G. A., & Cowan, W. M. (1977). Rat hippocampal neurons in dispersed cell culture. Brain Research, 126(3), 397–342.

    Article  CAS  PubMed  Google Scholar 

  • Bardy, C., van den Hurk, M., Eames, T., Marchand, C., Hernandez, R., Kellogg, M., et al. (2015). Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proceedings of the National Academy of Sciences of the United States of America, 112(20), E2725–E2734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom, S., Koudelka-Hep, M., et al. (2009). Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab on a Chip, 9, 2644–2651.

    Article  CAS  PubMed  Google Scholar 

  • Berdondini, L., van der Wal, P. D., Guenat, O., de Rooij, M. F., Koudelka-Hep, M., Seitz, P., et al. (2005). High-density electrode array for imaging in vitro electrophysiological activity. Biosensors and Bioelectronics, 21, 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Brewer, G. J., & Cotman, C. W. (1989). Survival and growth of hippocampal neurons in defined medium at low density: Advantages of a sandwich culture technique or low oxygen. Brain Research, 494(1), 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Brewer, G. J., Torricelli, J. R., Evege, K., & Price, P. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. Journal of Neuroscience Research, 35(5), 567–576.

    Article  CAS  PubMed  Google Scholar 

  • Chanda, S., Ang, C. E., Davila, J., Pak, C., Mall, M., Lee, Q. Y., et al. (2014). Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports, 3(2), 282–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charkhkar, H., Meyyappan, S., Matveeva, E., Moll, J. R., McHail, D. G., Peixoto, N., et al. (2015). Amyloid beta modulation of neuronal network activity in vitro. Brain Research, 1629, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Colombi, I., Mahajani, S., Frega, M., Gasparini, L., & Chiappalone, M. (2013). Effects of antiepileptic drugs on hippocampal neurons coupled to micro-electrode arrays. Frontiers in Neuroengineering, 6, 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Lullo, E., & Kriegstein, A. R. (2017). The use of brain organoids to investigate neural development and disease. Nature Reviews. Neuroscience, 18(10), 573–584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321, 1218–1221.

    Article  CAS  PubMed  Google Scholar 

  • Dyson, F. J. (2012). History of science. Is science mostly driven by ideas or by tools? Science, 338(6113), 1426–1427.

    Article  CAS  PubMed  Google Scholar 

  • Engle, S. J., Blaha, L., & Kleiman, R. J. (2018). Best practices for translational disease modeling using human iPSC-derived neurons. Neuron, 100(4), 783–797.

    Article  CAS  PubMed  Google Scholar 

  • Frey, U., Sedivy, J., Heer, F., Pedron, R., Ballini, M., Mueller, J., et al. (2010). Switch-matrix-based high-density microelectrode Array in CMOS technology. IEEE Journal of Solid-State Circuits, 45, 467–482.

    Article  Google Scholar 

  • Garcez, P. P., Loiola, E. C., da Costa, R. M., Higa, L. M., Trindade, P., Delvecchio, R., et al. (2016). Zika virus impairs growth in human neurospheres and brain organoids. Science, 352, 816–818.

    Article  CAS  PubMed  Google Scholar 

  • Golgi, C. (1873). Sulla struttura della sostanza grigia del cervello. Gazzetta Medica Italiana (Lombardia), 33, 244–246 (in Italian).

    Google Scholar 

  • Gordon, J., Amini, S., & White, M. K. (2013). General overview of neuronal cell culture. Methods in Molecular Biology, 1078, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Gortz, P., Siebler, M., Ihl, R., Henning, U., Luckhaus, C., Supprian, T., et al. (2013). Multielectrode array analysis of cerebrospinal fluid in Alzheimer's disease versus mild cognitive impairment: A potential diagnostic and treatment biomarker. Biochemical and Biophysical Research Communications, 434(2), 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Gray, E. G. (1959). Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study. Journal of Anatomy, 93, 420–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gross, G. W., Rieske, E., Kreutzberg, G. W., & Meyer, A. (1977). A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neuroscience Letters, 6(2–3), 101–105.

    Article  CAS  PubMed  Google Scholar 

  • Gullo, F., Manfredi, I., Lecchi, M., Casari, G., Wanke, E., & Becchetti, A. (2014). Multi-electrode array study of neuronal cultures expressing nicotinic beta2-V287L subunits, linked to autosomal dominant nocturnal frontal lobe epilepsy. An in vitro model of spontaneous epilepsy. Frontiers in Neural Circuits, 8, 87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hales, C. M., Zeller-Townson, R., Newman, J. P., Shoemaker, J. T., Killian, N. J., & Potter, S. M. (2012). Stimulus-evoked high frequency oscillations are present in neuronal networks on microelectrode arrays. Frontiers in Neural Circuits, 6, 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halevy, T., Czech, C., & Benvenisty, N. (2015). Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Reports, 4(1), 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Hamburger, V. (1980). S. Ramón y Cajal, R. G. Harrison, and the beginnings of neuroembryology. Perspectives in Biology and Medicine, 23(4), 600–616.

    Article  CAS  PubMed  Google Scholar 

  • Han, S. S., Williams, L. A., & Eggan, K. C. (2011). Constructing and deconstructing stem cell models of neurological disease. Neuron, 70(4), 626–644.

    Article  CAS  PubMed  Google Scholar 

  • Hargus, G., Ehrlich, M., Hallmann, A. L., & Kuhlmann, T. (2014). Human stem cell models of neurodegeneration: A novel approach to study mechanisms of disease development. Acta Neuropathologica, 127(2), 151–173.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, R. G. (1910). The outgrowth of the nerve fiber as a mode of protoplasmic movement. The Journal of Experimental Zoology, 9(4), 787–846.

    Article  Google Scholar 

  • Herzog, N., Shein-Idelson, M., & Hanein, Y. (2011). Optical validation of in vitro extra-cellular neuronal recordings. Journal of Neural Engineering, 8(5), 056008.

    Article  PubMed  Google Scholar 

  • Hierlemann, A., Frey, U., Hafizovic, S., & Heer, F. (2011). Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proceedings of the IEEE, 99, 252–284.

    Article  CAS  Google Scholar 

  • Hopkins, A. M., DeSimone, E., Chwalek, K., & Kaplan, D. L. (2015). 3D in vitro modeling of the central nervous system. Progress in Neurobiology, 125, 1–25.

    Article  PubMed  Google Scholar 

  • Hubel, D. H. (1957). Tungsten microelectrode for recording from single units. Science, 125, 549–550.

    Article  CAS  PubMed  Google Scholar 

  • Jakel, R. J., Schneider, B. L., & Svendsen, C. N. (2004). Using human neural stem cells to model neurological disease. Nature Reviews. Genetics, 5(2), 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Komor, A. C., Badran, A. H., & Liu, D. R. (2017). CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 168(1–2), 20–36.

    Article  CAS  PubMed  Google Scholar 

  • Lancaster, M. A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L. S., Hurles, M. E., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379.

    Article  CAS  PubMed  Google Scholar 

  • López-Muñoz, F., Boya, J., & Alamo, C. (2006). Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel prize award to Santiago Ramón y Cajal. Brain Research Bulletin, 70(4–6), 391–405.

    Article  PubMed  Google Scholar 

  • Louis, E. D., & Stapf, C. (2001). Unraveling the neuron jungle: The 1879-1886 publications by Wilhelm his on the embryological development of the human brain. Archives of Neurology, 58(11), 1932–1935.

    Article  CAS  PubMed  Google Scholar 

  • Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4), 527–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani, J., Coppola, G., Zhang, P., Abyzov, A., Provini, L., Tomasini, L., et al. (2015). FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell, 162, 375–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marín, O. (2013). Human cortical interneurons take their time. Cell Stem Cell, 12(5), 497–499.

    Article  PubMed  CAS  Google Scholar 

  • Maroof, A. M., Keros, S., Tyson, J. A., Ying, S. W., Ganat, Y. M., Merkle, F. T., et al. (2013). Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell, 12(5), 559–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens, M. B., Frega, M., Classen, J., Epping, L., Bijvank, E., Benevento, M., et al. (2016). Euchromatin histone methyltransferase 1 regulates cortical neuronal network development. Scientific Reports, 6, 35756.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, K. D., & de Vellis, J. (1980). Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. The Journal of Cell Biology, 85(3), 890–902.

    Article  CAS  PubMed  Google Scholar 

  • Mertens, J., Marchetto, M. C., Bardy, C., & Gage, F. H. (2016). Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews. Neuroscience, 17(7), 424–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millet, L. J., & Gillette, M. U. (2012). Over a century of neuron culture: From the hanging drop to microfluidic devices. Yale Journal of Biology and Medicine, 85, 501–521.

    PubMed  Google Scholar 

  • Napoli, A., & Obeid, I. (2016). Comparative analysis of human and rodent brain primary neuronal culture spontaneous activity using micro-electrode Array technology. Journal of Cellular Biochemistry, 117(3), 559–565.

    Article  CAS  PubMed  Google Scholar 

  • Neher, E., & Sakmann, B. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 260(5554), 799–802.

    Article  CAS  PubMed  Google Scholar 

  • Nehme, R., Zuccaro, E., Ghosh, S. D., Li, C., Sherwood, J. L., Pietilainen, O., et al. (2018). Combining NGN2 programming with developmental patterning generates human excitatory neurons with NMDAR-mediated synaptic transmission. Cell Reports, 23(8), 2509–2523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholas, C. R., Chen, J., Tang, Y., Southwell, D. G., Chalmers, N., Vogt, D., et al. (2013). Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell, 12(5), 573–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberheim, N. A., Takano, T., Han, X., He, W., Lin, J. H. C., Wang, F., et al. (2009). Uniquely hominid features of adult human astrocytes. Journal of Neuroscience, 29(10), 3276–3287.

    Article  CAS  PubMed  Google Scholar 

  • Odawara, A., Katoh, H., Matsuda, N., & Suzuki, I. (2016). Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Scientific Reports, 6, 26181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogiwara, I., Miyamoto, H., Morita, N., Atapour, N., Mazaki, E., Inoue, I., et al. (2007). Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: A circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. The Journal of Neuroscience, 27, 5903–5914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • PaÅŸca, S. P., Portmann, T., Voineagu, I., Yazawa, M., Shcheglovitov, A., PaÅŸca, A. M., et al. (2011). Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Medicine, 17(12), 1657–1662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pine, J. (1980). Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of Neuroscience Methods, 2(1), 19–31.

    Article  CAS  PubMed  Google Scholar 

  • Qiang, L., Inoue, K., & Abeliovich, A. (2014). Instant neurons: Directed somatic cell reprogramming models of central nervous system disorders. Biological Psychiatry, 75(12), 945–951.

    Article  CAS  PubMed  Google Scholar 

  • Ramón y Cajal, S. (1890). A quelle epoque apparaissent les expansions des cellule nerveuses de la moelle epinere du poulet. Anatomischer Anzeiger, 5, 609–613.

    Google Scholar 

  • Ross, C. A., & Akimov, S. S. (2014). Human-induced pluripotent stem cells: Potential for neurodegenerative diseases. Human Molecular Genetics, 23(R1), R17–R26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siller, R., Greenhough, S., Park, I. H., & Sullivan, G. J. (2013). Modelling human disease with pluripotent stem cells. Current Gene Therapy, 13(2), 99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldner, F., & Jaenisch, R. (2018). Stem cells, genome editing, and the path to translational medicine. Cell, 175(3), 615–632.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Thoma, E. C., Wischmeyer, E., Offen, N., Maurus, K., Sirén, A. L., Schartl, M., et al. (2012). Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS One, 7(6), e38651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas Jr., C. A., Springer, P. A., Loeb, G. E., Berwald-Netter, Y., & Okun, L. M. (1972). A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Experimental Cell Research, 74(1), 61–66.

    Article  PubMed  Google Scholar 

  • Thomas, W. E. (1985). Synthesis of acetylcholine and gamma-aminobutyric acid by dissociated cerebral cortical cells in vitro. Brain Research, 332(1), 79–89.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  • Tidball, A. M., & Parent, J. M. (2016). Exciting cells: Modeling genetic epilepsies with patient-derived induced pluripotent stem cells. Stem Cells, 34(1), 27–33.

    Article  PubMed  Google Scholar 

  • Tsai, D., Sawyer, D., Bradd, A., Yuste, R., & Shepard, K. L. (2017). A very large-scale microelectrode array for cellular-resolution electrophysiology. Nature Communications, 8, 1802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vardi, R., Goldental, A., Sardi, S., Sheinin, A., & Kanter, I. (2016). Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity. Scientific Reports, 6, 36228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varghese, K., Molnar, P., Das, M., Bhargava, N., Lambert, S., Kindy, M. S., et al. (2010). A new target for amyloid beta toxicity validated by standard and high-throughput electrophysiology. PLoS One, 5(1), e8643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogt, D., Cho, K. K. A., Shelton, S. M., Paul, A., Huang, Z. J., Sohal, V. S., et al. (2018). Mouse Cntnap2 and human CNTNAP2 ASD alleles cell autonomously regulate PV+ cortical interneurons. Cerebral Cortex, 28(11), 3868–3879.

    Article  PubMed  Google Scholar 

  • Yamamoto, C. (1972). Activation of hippocampal neurons by mossy fiber stimulation in thin brain sections in vitro. Experimental Brain Research, 14(4), 423–435.

    Article  CAS  PubMed  Google Scholar 

  • Yuste, R. (2015). From the neuron doctrine to neural networks. Nature Reviews. Neuroscience, 16(8), 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5), 785–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Frega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keller, J.M., Frega, M. (2019). Past, Present, and Future of Neuronal Models In Vitro. In: Chiappalone, M., Pasquale, V., Frega, M. (eds) In Vitro Neuronal Networks. Advances in Neurobiology, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-11135-9_1

Download citation

Publish with us

Policies and ethics