Skip to main content

Bilirubin oxidation products, oxidative stress, and intracerebral hemorrhage

  • Conference paper
Cerebral Hemorrhage

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 105))

Abstract

Hematoma and perihematomal regions after intracerebral hemorrhage (ICH) are biochemically active environments known to undergo potent oxidizing reactions. We report facile production of bilirubin oxidation products (BOXes) via hemoglobin=Fenton reaction under conditions approximating putative in vivo conditions seen following ICH.

Using a mixture of human hemoglobin, physiological buffers, uncon-jugated solubilized bilirubin, and molecular oxygen and=or hydrogen peroxide, we generated BOXes, confirmed by spectral signature consistent with known BOXes mixtures produced by independent chemical synthesis, as well as HPLC-MS of BOX A and BOX B. Kinetics are straightforward and uncomplicated, having initial rates around 0.002 µM bilirubin per mM hemoglobin per second under normal experimental conditions. In hematomas from porcine ICH model, we observed significant production of BOXes, malondialdehyde, and superoxide dismutase, indicating a potent oxidizing environment. BOX concentrations increased from 0.084 ± 0.01 in fresh blood to 22.24 ± 4.28 in hematoma at 72h, and were 11.22 ±1.90 in adjacent white matter (nmol/g). Similar chemical and analytical results are seen in ICH in vivo, indicating the hematoma is undergoing similar potent oxidations.

This is the first report of BOXes production using a well-defined biological reaction and in vivo model of same. Following ICH, amounts of unconjugated bilirubin in hematoma can be substantial, as can levels of iron and hemoglobin. Oxidation of unconjugated bilirubin to yield bioactive molecules, such as BOXes, is an important discovery, expanding the role of bilirubin in pathological processes seen after ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butcher K, Laidlaw J (2003) Current intracerebral haemorrhage management. J Clin Neurosci 10: 158–167

    Article  PubMed  Google Scholar 

  2. Chen M, Regan RF (2007) Time course of increased heme oxygenase activity and expression after experimental intracerebral hemorrhage: correlation with oxidative injury. J Neurochem 103: 2015–2021

    Article  PubMed  CAS  Google Scholar 

  3. Cheng J, Ou JS, Singh H, Falck JR, Narsimhaswamy D, Pritchard KA Jr, Schwartzman ML (2008) 20-hydroxyeicosatetraenoic acid causes endothelial dysfunction via eNOS uncoupling. Am J Physiol Heart Circ Physiol 294: H1018–H1026

    Article  PubMed  CAS  Google Scholar 

  4. Clark JF, Loftspring M, Wurster WL, Pyne-Geithman GJ (2008) Chemical and biochemical oxidations in spinal fluid after subarach-noid hemorrhage. Front Biosci 13: 1806–1812

    Article  PubMed  CAS  Google Scholar 

  5. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186: 407–421

    Article  PubMed  CAS  Google Scholar 

  6. Fayad PB, Awad IA (1998) Surgery for intracerebral hemorrhage. Neurology 51: S69–S73

    PubMed  CAS  Google Scholar 

  7. Karwacki Z, Kowiariski P, Witkowska M, Karwacka M, Dziewiatkowski J, Morys J (2006) The pathophysiology of intracerebral haemorrhage. Folia Morphol (Warsz) 65: 295–300

    CAS  Google Scholar 

  8. Kranc KR, Pyne GJ, Tao L, Claridge TD, Harris DA, Cadoux-Hudson TA, Turnbull JJ, Schofield CJ, Clark JF (2000) Oxidative degradation of bilirubin produces vasoactive compounds. Eur J Biochem 267: 7094–7101

    Article  PubMed  CAS  Google Scholar 

  9. Lapchak PA, Araujo DM (2007) Advances in hemorrhagic stroke therapy: conventional and novel approaches. Expert Opin Emerg Drugs 12: 389–406

    Article  PubMed  CAS  Google Scholar 

  10. Lodhia KR, Shakui P, Keep RF (2006) Hydrocephalus in a rat model of intraventricular hemorrhage. Acta Neurochir Suppl 96: 207–211

    Article  PubMed  CAS  Google Scholar 

  11. Loftspring MC, Beiler S, Beiler C, Wagner KR (2006) Plasma proteins in edematous white matter after intracerebral hemorrhage confound immunoblots: an ELISA to quantify contamination. J Neurotrauma 23: 1904–1911

    Article  PubMed  Google Scholar 

  12. Loftspring MC, Wurster WL, Pyne-Geithman GJ, Clark JF (2007) An in vitro model of aneurysmal subarachnoid hemorrhage: oxidation of unconjugated bilirubin by cytochrome oxidase. J Neurochem 102: 1990–1995

    Article  PubMed  CAS  Google Scholar 

  13. Lyons MA, Shukla R, Zhang K, Pyne GJ, Singh M, Biehle SJ, Clark JF (2004) Increase of metabolic activity and disruption of normal contractile protein distribution by bilirubin oxidation products in vascular smooth-muscle cells. J Neurosurg 100: 505–511

    PubMed  CAS  Google Scholar 

  14. Michaelsson M, Nosslin B, Sjolin S (1965) Plasma bilirubin determination in the newborn infant. A methodological study with especial reference to the influence of hemolysis. Pediatrics 35: p925–p931

    Google Scholar 

  15. Mun-Bryce S, Wilkerson AC, Papuashvili N, Okada YC (2001) Recurring episodes of spreading depression are spontaneously elicited by an intracerebral hemorrhage in the swine. Brain Res 888: 248–255

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura T, Keep RF, Hua Y, Nagao S, Hoff JT, Xi G (2006) Iron-induced oxidative brain injury after experimental intracerebral hemorrhage. Acta Neurochir Suppl 96: 194–198

    Google Scholar 

  17. Pyne-Geithman GJ, Morgan CJ, Wagner K, Dulaney EM, Carrozzella J, Kanter DS, Zuccarello M, Clark JF (2005) Bilirubin production and oxidation in CSF of patients with cerebral vaso-spasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 25: 1070–1077

    Article  PubMed  CAS  Google Scholar 

  18. Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE, Broderick JP, Brott TG (1996) Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihema-tomal white matter. Stroke 27: 490–497

    PubMed  CAS  Google Scholar 

  19. Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE (1998) Early metabolic alterations in edematous peri-hematomal brain regions following experimental intracerebral hemorrhage. J Neurosurg 88: 1058–1065

    PubMed  CAS  Google Scholar 

  20. Wagner KR, Xi G, Hua Y, Zuccarello M, de Courten-Myers GM, Broderick JP, Brott TG (1999) Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: edema reduction and blood-brain barrier protection. J Neurosurg 90: 491–498

    Article  PubMed  CAS  Google Scholar 

  21. Wagner KR, Packard BA, Hall CL, Smulian AG, Linke MJ, De Courten-Myers GM, Packard LM, Hall NC (2002) Protein oxidation and heme oxygenase-1 induction in porcine white matter following intracerebral infusions of whole blood or plasma. Dev Neurosci 24: 154–160

    Article  PubMed  CAS  Google Scholar 

  22. Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2003) Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23: 629–652

    Article  PubMed  CAS  Google Scholar 

  23. Wang J, Doré S (2007) Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 130: 1643–1652

    Article  PubMed  Google Scholar 

  24. Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, Brott TG, Hoff JT (1998) Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke 29: 2580–2586

    PubMed  CAS  Google Scholar 

  25. Yang S, Nakamura T, Hua Y, Keep RF, Younger JG, He Y, Hoff JT, Xi G (2006) The role of complement C3 in intracerebral hemorrhage-induced brain injury. J Cereb Blood Flow Metab 26: 1490–1495

    Article  PubMed  CAS  Google Scholar 

  26. Zuccarello M, Andaluz N, Wagner KR (2002) Minimally invasive therapy for intracerebral hematomas. Neurosurg Clin N Am 13: 349–354

    Article  PubMed  Google Scholar 

  27. Zhou JY, Prognon P (2006) Raw material enzymatic activity determination: A specific case for validation and comparison of analytical methods-the example of superoxide dismutase (SOD). J Pharm Biomed Anal 40: 1143–1148

    Article  PubMed  CAS  Google Scholar 

  28. Peskin AV, Winterbourn CC (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293: 157–166

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Clark, J.F. et al. (2008). Bilirubin oxidation products, oxidative stress, and intracerebral hemorrhage. In: Zhou, LF., et al. Cerebral Hemorrhage. Acta Neurochirurgica Supplementum, vol 105. Springer, Vienna. https://doi.org/10.1007/978-3-211-09469-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-09469-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-09468-6

  • Online ISBN: 978-3-211-09469-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics