Skip to main content

The Trouble with Long-Range Base Pairs in RNA Folding

  • Conference paper
Book cover Advances in Bioinformatics and Computational Biology (BSB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8213))

Included in the following conference series:

Abstract

RNA prediction has long been struggling with long-range base pairs since prediction accuracy decreases with base pair span. We analyze here the empirical distribution of base pair spans in large collection of experimentally known RNA structures. Surprisingly, we find that long-range base pairs are overrepresented in these data. In particular, there is no evidence that long-range base pairs are systematically overpredicted relative to short-range interactions in thermodynamic predictions. This casts doubt on a recent suggestion that kinetic effects are the cause of length-dependent decrease of predictability. Instead of a modification of the energy model we advocate a modification of the expected accuracy model for RNA secondary structures. We demonstrate that the inclusion of a span-dependent penalty leads to improved maximum expected accuracy structure predictions compared to both the standard MEA model and a modified folding algorithm with an energy penalty function. The prevalence of long-range base pairs provide further evidence that RNA structures in general do not have the so-called polymer zeta property. This has consequences for the asymptotic performance for a large class of sparsified RNA folding algorithms.

The Students of the Bioinformatics II Lab Class 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doshi, K., Cannone, J., Cobaugh, C., Gutell, R.: Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 5, 105 (2004)

    Article  Google Scholar 

  2. Hofacker, I.L., Priwitzer, B., Stadler, P.F.: Prediction of locally stable RNA secondary structures for genome-wide surveys. Bioinformatics 20, 191–198 (2004)

    Article  Google Scholar 

  3. Bernhart, S., Hofacker, I.L., Stadler, P.F.: Local RNA base pairing probabilities in large sequences. Bioinformatics 22, 614–615 (2006)

    Article  Google Scholar 

  4. Kiryu, H., Kin, T., Asai, K.: Rfold: an exact algorithm for computing local base pairing probabilities. Bioinformatics 24, 367–373 (2008)

    Article  Google Scholar 

  5. Kiryu, H., Terai, G., Imamura, O., Yoneyama, H., Suzuki, K., Asai, K.: A detailed investigation of accessibilities around target sites of siRNAs and miRNAs. Bioinformatics 27, 1788–1797 (2011)

    Article  Google Scholar 

  6. Lange, S.J., Maticzka, D., Möhl, M., Gagnon, J.N., Brown, C.M., Backofen, R.: Global or local? Predicting secondary structure and accessibility in mRNAs. Nucleic Acids Res. 40, 5215–5226 (2012)

    Article  Google Scholar 

  7. Proctor, J.R.P., Meyer, I.M.: CoFold: an RNA secondary structure prediction method that takes co-transcriptional folding into account. Nucleic Acids Res. 41, e102 (2013)

    Article  Google Scholar 

  8. Romero-López, C., Berzal-Herranz, A.: A long-range RNA-RNA interaction between the 5’ and 3’ ends of the HCV genome. RNA 15, 1740–1752 (2009)

    Article  Google Scholar 

  9. Wu, B., Grigull, J., Ore, M.O., Morin, S., White, K.A.: Global organization of a positive-strand RNA virus genome. PLoS Pathog. 9, e1003363 (2013)

    Google Scholar 

  10. Raker, V.A., Mironov, A.A., Gelfand, M.S., Pervouchine, D.D.: Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic Acids Res. 37, 4533–4534 (2009)

    Article  Google Scholar 

  11. Pervouchine, D.D., Khrameeva, E.E., Pichugina, M.Y., Nikolaienko, O.V., Gelfand, M.S., Rubtsov, P.M., Mironov, A.A.: Evidence for widespread association of mammalian splicing and conserved long-range RNA structures. RNA 18, 1–15 (2012)

    Article  Google Scholar 

  12. Yoffe, A.M., Prinsen, P., Gelbart, W.M., Ben-Shaul, A.: The ends of a large RNA molecule are necessarily close. Nucl. Acids Res. 39, 292–299 (2011)

    Article  Google Scholar 

  13. Fang, L.T.: The end-to-end distance of RNA as a randomly self-paired polymer. J. Theor. Biol. 280, 101–107 (2011)

    Article  Google Scholar 

  14. Clote, P., Ponty, Y., Steyaert, J.M.: Expected distance between terminal nucleotides of RNA secondary structures. J. Math. Biol. 65, 581–599 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, H.S., Reidys, C.M.: The 5’-3’ distance of RNA secondary structures. J. Comput. Biol. 19, 867–878 (2012)

    Article  MathSciNet  Google Scholar 

  16. Backofen, R., Fricke, M., Marz, M., Qin, J., Stadler, P.F.: Distribution of graph-distances in Boltzmann ensembles of RNA secondary structures. In: Darling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 112–125. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Sparse RNA folding: Time and space efficient algorithms. J. Discr. Alg. 9, 12–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Andronescu, M., Bereg, V., Hoos, H.H., Condon, A.: RNA STRAND: the RNA secondary structure and statistical analysis database. BMC Bioinf. 9, 340 (2008)

    Article  Google Scholar 

  19. Zwieb, C., Gorodkin, J., Knudsen, B., Burks, J., Wower, J.: tmrdb (tmrna database). Nucleic Acids Res. 31(1), 446–447 (2003)

    Article  Google Scholar 

  20. Rosenblad, M.A., Larsen, N., Samuelsson, T., Zwieb, C.: Kinship in the SRP RNA family. RNA Biol. 6(5), 508–516 (2009)

    Article  Google Scholar 

  21. Brown, J.: The ribonuclease p database. NAR 27(1) (1999)

    Google Scholar 

  22. Jiang, M., Anderson, J., Gillespie, J., Mayne, M.: ushuffle: a useful tool for shuffling biological sequences while preserving the k-let counts. BMC Bioinformatics 9(1), 192 (2008)

    Article  Google Scholar 

  23. Waterman, M.S.: Secondary structure of single-stranded nucleic acids. Adv. Math. Suppl. Studies 1, 167–212 (1978)

    MathSciNet  Google Scholar 

  24. McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29(6-7), 1105–1119 (1990)

    Article  Google Scholar 

  25. Lu, Z., Gloor, J., Mathews, D.: Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 15, 1805–1813 (2009)

    Article  Google Scholar 

  26. Lorenz, R., Bernhart, S.H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011)

    Article  Google Scholar 

  27. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)

    Google Scholar 

  28. Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5, 140 (2004)

    Article  Google Scholar 

  29. Wexler, Y., Zilberstein, C., Ziv-Ukelson, M.: A study of accessible motifs and RNA folding complexity. J. Comput. Biol. 14, 856–872

    Google Scholar 

  30. Dimitrieva, S., Bucher, P.: Practicality and time complexity of a sparsified RNA folding algorithm. J Bioinf. Comp. Biol. 10, 1241007 (2012)

    Article  Google Scholar 

  31. Huang, F.W.D., Reidys, C.M.: On the combinatorics of sparsification. Alg. Mol. Biol. 7, 28 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Amman, F. et al. (2013). The Trouble with Long-Range Base Pairs in RNA Folding. In: Setubal, J.C., Almeida, N.F. (eds) Advances in Bioinformatics and Computational Biology. BSB 2013. Lecture Notes in Computer Science(), vol 8213. Springer, Cham. https://doi.org/10.1007/978-3-319-02624-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02624-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02623-7

  • Online ISBN: 978-3-319-02624-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics