Skip to main content

Determination of Intracellular Chloride Concentrations by Fluorescence Lifetime Imaging

  • Chapter
  • First Online:

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 111))

Abstract

Fluorescence microscopy with membrane-permeable ion-sensitive fluorophores allows the non-invasive determination of intracellular ion concentrations. Chloride is the major anion of intra- and extracellular fluids influencing a great number of physiological processes. The dysfunction of chloride transporters and channels leads to disturbance in chloride homeostasis that can result in diseases of different parts of the body. The different existing chloride sensitive fluorophores and their usefulness in fluorescence lifetime imaging are put forward in this chapter. Fluorescence lifetime imaging of a chloride sensitive quinolinium dye (MQAE) has been established as an elegant tool to determine intracellular chloride concentrations of different cells in living biological tissue. Details of the experimental procedure are described and two case studies—chloride transport by a chloride transporter (KCC2) across the cell membrane and determination of intracellular chloride concentration in glia cells (EAAT1-positive astrocytes)—are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.V. Agronskaia, L. Tertoolen H.C. Gerritsen, High frame rate fluorescence lifetime imaging. J. Phys. D: Appl. Phys. 36, 1655–1662 (2003)

    Google Scholar 

  2. D. Arosio, G. Garau, F. Ricci, L. Marchetti, R. Bizzarri, R. Nifosı, F. Beltram, Spectroscopic and structural study of proton and halide ion cooperative binding to GFP. Biophys. J. 93, 232–244 (2007)

    Article  CAS  Google Scholar 

  3. D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, F. Beltram, Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat. Meth. 7, 516–518 (2010)

    Article  CAS  Google Scholar 

  4. W. Becker, A. Bergmann, M.A. Hink, K. König, K. Benndorf, C. Biskup, Fluorescence lifetime imaging by time-correlated single photon counting. Microsc. Res. Technol. 63, 58–66 (2004)

    Article  CAS  Google Scholar 

  5. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, 2005)

    Book  Google Scholar 

  6. W. Becker, A. Bergmann, C. Biskup, Multi-spectral fluorescence lifetime imaging by TCSPC. Microsc. Res. Technol. 70, 403–409 (2007)

    Article  CAS  Google Scholar 

  7. W. Becker, B. Su, O. Holub, K. Weisshart, FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microsc. Res. Technol. 74, 804–811 (2011)

    CAS  Google Scholar 

  8. W. Becker, The bh TCSPC Handbook, 5th edn (Becker & Hickl GmbH, Berlin, 2012)

    Google Scholar 

  9. W. Becker, V. Shcheslavkiy, S. Frere, I. Slutsky, Spatially resolved recording of transient fluorescence-lifetime effects by line-scanning TCSPC. Microsc. Res. Technol. 77, 216–224 (2014)

    Article  CAS  Google Scholar 

  10. W. Becker, Fluorescence lifetime imaging—techniques and applications. J. Microsc. 247, 119–136 (2012)

    Article  CAS  Google Scholar 

  11. K. Berglund, W. Schleich, H. Wang, G. Feng, W.C. Hall, T. Kuner, G.J. Augustine, Imaging synaptic inhibition throughout the brain via genetically targeted Clomeleon. Brain Cell Biol. 36, 101–118 (2008)

    Article  Google Scholar 

  12. C. Biskup, T. Zimmer, K. Benndorf, FRET between cardiac Na + channel subunits measured with a confocal microscope and a streak camera. Nat. Biotechnol. 22, 220–224 (2004)

    Article  CAS  Google Scholar 

  13. C. Biskup, T. Gensch, in Fluorescence Lifetime Imaging of Ions in Biological Tissues, ed. by D. Elson, P. W. M. French and L. Marcu. Fluorescence Lifetime Spectroscopy and Imaging. Principles and Applications in Biomedical Diagnostics (Taylor & Francis, Boca Raton 2014)

    Google Scholar 

  14. J. Biwersi, A.S. Verkman, Cell-permeable fluorescent indicator for cytosolic chloride. Biochemistry 30, 7879–7883 (1991)

    Article  CAS  Google Scholar 

  15. J. Biwersi, B. Tulk, A.S. Verkman, Long-wavelength chloride-sensitive fluorescent indicators. Anal. Biochem. 219, 139–143 (1994)

    Article  CAS  Google Scholar 

  16. P. Bregestovski, D. Arosio, in Green Fluorescent Protein-Based Chloride Ion Sensors for In Vivo Imaging, ed. by G. Jung. Fluorescent Proteins II, Springer Ser. Fluoresc., vol. 12 (Springer, Berlin Heidelberg, 2012), pp. 99–124

    Google Scholar 

  17. I. Bugiel, K. Koenig, H. Wabnitz, Investigation of cells by fluorescence laser scanning microscopy with subnanosecond time resolution. Las. Life Sci. 3, 47–53 (1989)

    Google Scholar 

  18. E.P. Buurman, R. Sanders, A. Draaijer, H.C. Gerritsen, J.J.F. van Veen, P.M. Houpt, Y.K. Levine, Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14, 155–159 (1992)

    Article  Google Scholar 

  19. C. Chen, H. Okayama, High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987)

    Article  CAS  Google Scholar 

  20. S. Cheng, R.M. Cuenca, B. Liu, B.H. Malik, J.M. Jabbour, K.C. Maitland, J. Wright, Y.S. Cheng, J.A. Jo, Handheld multispectral fluorescence lifetime imaging system for in vivo applications. Biomed. Opt. Express 5, 921–931 (2014)

    Article  Google Scholar 

  21. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  CAS  Google Scholar 

  22. M.A. Digman, V.R. Caiolfa, M. Zamai, E. Gratton, The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 94, L14–L16 (2008)

    Article  CAS  Google Scholar 

  23. K. Dowling, M.J. Dayel, M.J. Lever, P.M.W. French, J.D. Hares, A.K.L. Dymoke-Bradshaw, Fluorescence lifetime imaging with picosecond resolution for biomedical applications. Opt. Lett. 23, 810–812 (1998)

    Article  CAS  Google Scholar 

  24. J. Duebel, S. Haverkamp, W. Schleich, G. Feng, G.J. Augustine, T. Kuner, T. Euler, Two-photon imaging reveals somatodendritic chloride gradient in retinal ON-type bipolar cells expressing the biosensor Clomeleon. Neuron 49, 81–94 (2006)

    Article  CAS  Google Scholar 

  25. V.I. Dzhala, K.V. Kuchibhotla, J.C. Glykys, K.T. Kahle, W.B. Swiercz, G. Feng, T. Kuner, G.J. Augustine, B.J. Bacskai, K.J. Staley, Progressive NKCC1-dependent neuronal chloride accumulation during neonatal seizures. J. Neurosci. 30, 11745–11761 (2010)

    Article  CAS  Google Scholar 

  26. V. Faundez, H.C. Hartzell, E.M. Adler, Teaching resources. Chloride concentration and pH along the endosomal pathway. Science’s STKE : signal transduction knowledge environment, tr2 (2004)

    Google Scholar 

  27. F. Festy, S.M. Ameer-Beg, T. Ng, K. Suhling, Imaging proteins in vivo using fluorescence lifetime microscopy. Mol. BioSyst. 3, 381–391 (2007)

    Article  CAS  Google Scholar 

  28. L.C. Foo, N.J. Allen, E.A. Bushong, P.B. Ventura, W.S. Chung, L. Zhou, J.D. Cahoy, R. Daneman, H. Zong, M.H. Ellisman, B.A. Barres, Development of a method for the p purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011)

    Article  CAS  Google Scholar 

  29. T. French, P.T.C. So, D.J. Weaver, T. Coelho-Sampaio, E. Gratton, E.W. Voss, J. Carrero, Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing. J. Microsc. 185, 339–353 (1997)

    Article  CAS  Google Scholar 

  30. K. Funk, A. Woitecki, C. Franjic-Würtz, T. Gensch, F. Möhrlen, S. Frings, Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol. Pain 4, 32 (2008)

    Article  Google Scholar 

  31. T.W.J. Gadella, T.M. Jovin, R.M. Clegg, Fluorescence lifetime imaging microscopy (FLIM)—spatial resolution of structures on the nanosecond timescale. Biophys. Chem. 48, 221–239 (1993)

    Article  CAS  Google Scholar 

  32. M. Gagnon, M.J. Bergeron, G. Lavertu, A. Castonguay, S. Tripathy, R.P. Bonin, J. Perez-Sanchez, D. Boudreau, B. Wang, L. Dumas, I. Valade, K. Bachand, M. Jacob-Wagner, C. Tardif, I. Kianicka, P. Isenring, G. Attardo, J.A.M. Coull, Y. De Koninck, Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat. Med. 19, 1524–1528 (2013)

    Article  CAS  Google Scholar 

  33. L.J. Galietta, P.M. Haggie, A.S. Verkman, Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett. 499, 220–224 (2001)

    Article  CAS  Google Scholar 

  34. C.D. Geddes, Optical halide sensing using fluorescence quenching: Theory, simulations and applications—a review. Meas. Sci. Technol. 12, R53–R88 (2001)

    Article  CAS  Google Scholar 

  35. A. Geiger, L. Russo, T. Gensch, T. Thestrup, S. Becker, K.-P. Hopfner, C. Griesinger, G. Witte, O. Griesbeck, Correlating calcium binding, FRET and conformational change in the biosensor TN-XXL. Biophys. J. 102, 2401–2410 (2012)

    Article  CAS  Google Scholar 

  36. D. Gilbert, C. Franjic-Wuertz, K. Funk, T. Gensch, S. Frings, F. Moehrlen, Differential maturation of chloride homeostasis in primary afferent neurons of the somatosensory system. Int. J. Dev. Neurosci. 25, 479–489 (2008)

    Article  Google Scholar 

  37. J. Glykys, V. Dzhala, K. Egawa, T. Balena, Y. Saponjian, K.V. Kuchibhotla, B.J. Bacskai, K.T. Kahle, T. Zeuthen, K.J. Staley, Local impermeant anions establish the neuronal chloride concentration. Science 343, 670–675 (2014)

    Article  CAS  Google Scholar 

  38. M. Göppert-Mayer, Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 9, 273–294 (1931)

    Article  Google Scholar 

  39. E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, N. Barry, Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J. Biomed. Opt. 8, 381–390 (2003)

    Article  Google Scholar 

  40. J.S. Grimley, L. Li, W. Wang, L. Wen, L.S. Beese, H.W. Hellinga, G.J. Augustine, Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation. J. Neurosc. 33, 16297–16309 (2013)

    Article  CAS  Google Scholar 

  41. O. Heimstädt, Das Fluoreszenzmikroskop. Zeitschr. wiss. Mikrosk. 28, 330–337 (1911)

    Google Scholar 

  42. C. Hille, M. Lahn, G.-H. Loehmannsroeben, C. Dosche, Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands. Photochem. Photobiol. Sci. 8, 319–327 (2009)

    Article  CAS  Google Scholar 

  43. G. Huberfeld, L. Winter, D. Clemenceau, M. Baulac, K. Kaile, R. Miles, C. Rivera, Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J. Neurosci. 27, 9866–9873 (2007)

    Article  CAS  Google Scholar 

  44. C.A. Hübner, The KCl-cotransporter KCC2 linked to epilepsy. EMBO Rep. 15, 732–733 (2014)

    Article  Google Scholar 

  45. N.P. Illsley, A.S. Verkman, Membrane chloride transport measured using a chloride-sensitive fluorescent probe. Biochemistry 26, 1215–1219 (1987)

    Article  CAS  Google Scholar 

  46. S. Jayaraman, L. Teitler, B. Skalski, A.S. Verkman, Long-wavelength iodide-sensitive fluorescent indicators for measurement of functional CFTR expression in cells. Am. J. Phys. Cell Phys. 277, C1008–C1018 (1999a)

    CAS  Google Scholar 

  47. S. Jayaraman, A.S. Verkman, Quenching mechanism of quinolinium type chloride-sensitive fluorescent indicators. Biophys. Chem. 85, 49–57 (2000)

    Article  CAS  Google Scholar 

  48. S. Jayaraman, P. Haggie, R.M. Wachter, S.J. Remington, A.S. Verkman, Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J. Biol. Chem. 275, 6047–6050 (2000)

    Article  CAS  Google Scholar 

  49. S. Jayaraman, J. Biwersi, A.S. Verkman, Synthesis and characterization of dual-wavelength Cl-sensitive fluorescent indicators for ratio imaging. Am. J. Physiol. Cell Physiol. 276, C747–C757 (1999b)

    CAS  Google Scholar 

  50. B. Jiang, X. Sun, K. Cao, R. Wang, Endogenous KV channels in human embryonic kidney (HEK-293) cells. Mol. Cell. Biochem. 238, 69–79 (2002)

    Article  CAS  Google Scholar 

  51. M. Jose, D.K. Nair, C. Reissner, R. Hartig, W. Zuschratter, Photophysics of clomeleon by FLIM: Discriminating excited state reactions along neuronal development. Biophys. J. 92, 2237–2254 (2007)

    Article  CAS  Google Scholar 

  52. M. Jungblut, M.C. Tiveron, S. Barral, B. Abrahamsen, S. Knöbel, S. Pennartz, J. Schmitz, M. Perraut, F.W. Pfrieger, W. Stoffel, H. Cremer, A. Bosio, Isolation and characterization of living primary astroglial cells using the new GLAST-specific monoclonal antibody ACSA-1. Glia 60, 894–907 (2012)

    Article  Google Scholar 

  53. K.T. Kahle, N.D. Merner, P. Friedel, L. Silayeva, B. Liang, A. Khanna, Y. Shang, P. Lachance-Touchette, C. Bourassa, A. Levert, P.A. Dion, B. Walcott, D. Spiegelman, A. Dionne-Laporte, A. Hodgkinson, P. Awadalla, H. Nikbakht, J. Majewski, P. Cossette, T.Z. Deeb, S.J. Moss, I. Medina, G.A. Rouleau, Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy. EMBO Rep. 15, 766–774 (2014)

    Article  CAS  Google Scholar 

  54. H. Kaneko, I. Putzier, S. Frings, T. Gensch, Determination of Intracellular Chloride Concentration in Dorsal Root Ganglion Neurons by Fluorescence Lifetime Imaging, ed. by C.M. Fuller. Calcium-Activated Chloride Channels, Book Series: Current Topics in Membranes, vol. 53 (Academic Press, San Diego, 2002), pp. 167–194

    Google Scholar 

  55. H. Kaneko, I. Putzier, S. Frings, U.B. Kaupp, T. Gensch, Chloride accumulation in mammalian olfactory sensory neurons. J. Neurosci. 24, 7931–7938 (2004)

    Article  CAS  Google Scholar 

  56. V. Katsoulidou, A. Bergmann, W. Becker, How fast can TCSPC FLIM be made? Proc. SPIE 6771, 67710B-1–67710B-7 (2007)

    Google Scholar 

  57. F. Koberling, V. Buschmann, C. Hille, M. Patting, C. Dosche, A. Sandberg, A. Wheelock, R. Erdmann, in Fast Raster Scanning Enables FLIM in Macroscopic Samples Up to Several Centimetres, Multiphoton Microscopy in the Biomedical Sciences X, Proceedings of SPIE, vol. 7569 (2010), p. 756931

    Google Scholar 

  58. C. Koncz, J.T. Daugirdas, Use of MQAE for measurement of intracellular [Cl] in cultured aortic smooth muscle cells. Am. J. Physiol. 267, H2114–H2123 (1994)

    CAS  Google Scholar 

  59. R. Krapf, C.A. Berry, A.S. Verkman, Estimation of intracellular chloride activity in isolated perfused rabbit proximal convoluted tubules using a fluorescent indicator. Biophys. J. 53, 955–962 (1988)

    Article  CAS  Google Scholar 

  60. R.V. Krishnan, H. Saitoh, H. Terada, V.E. Centonze, B. Herman, Development of a multiphoton fluorescence lifetime imaging microscopy (FLIM) system using a streak camera. Rev. Sci. Instrum. 74, 2714–2721 (2003)

    Article  CAS  Google Scholar 

  61. T. Kuner, G.J. Augustine, A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27, 447–459 (2000)

    Article  CAS  Google Scholar 

  62. M. Lahn, C. Hille, F. Koberling, P. Kapusta, C. Dosche, in pH and Chloride Recordings in Living Cells Using Two-Photon Fluorescence Lifetime Imaging Microscopy, A. Periasamy, P.T.C. So, K. Konig. Multiphoton Microscopy in the Biomedical Sciences X, Proceedings of SPIE vol. 7569, 75690U (2010)

    Google Scholar 

  63. M. Lahn, C. Dosche, C. Hille, Two-photon microscopy and fluorescence lifetime imaging reveal stimulus induced intracellular Na+ and Cl changes in cockroach salivary acinar cells. Am. J. Physiol. Cell Physiol. 300, C1323–C1336 (2011)

    Article  CAS  Google Scholar 

  64. J.R. Lakowicz, H. Szmacinski, K. Nowaczyk, K.W. Berndt, M. Johnson, Fluorescence lifetime imaging. Anal. Biochem. 202, 316–330 (1992)

    Article  CAS  Google Scholar 

  65. J.J. Li, R. Ji, Y.Q. Shi, Y.Y. Wang, Y.L. Yang, K.F. Dou, Changes in expression of the chloride homeostasis-regulating genes, KCC2 and NKCC1, in the blood of cirrhotic patients with hepatic encephalopathy. Exp. Ther. Med. 4, 1075–1080 (2012)

    CAS  Google Scholar 

  66. H. Lehmann, Das Lumineszenz-Mikroskop, seine Grundlagen und seine Anwendungen. Zeitschr. wiss. Mikrosk. 30, 418–470 (1913)

    Google Scholar 

  67. H. Lodish, A. Berk, C.A. Kaiser, M. Krieger, A. Bretscher, H. Ploegh, A. Amon, M.P. Scott, Molecular Cell Biology, 7th edn (W.H. Freeman & Co, New York, 2013), p. 485

    Google Scholar 

  68. H.J. Luhmann, S. Kirischuk, W. Kilb, Comment on “local impermeant anions establish the neuronal chloride concentration”. Science 345, 1130 (2014)

    Article  CAS  Google Scholar 

  69. M.K. Mansoura, J. Biwersi, M.A. Ashlock, A.S. Verkman, Fluorescent chloride indicators to assess the efficacy of CFTR cDNA delivery. Hum. Gene Ther. 10, 861–875 (1999)

    Article  CAS  Google Scholar 

  70. A. Margineau, J. Hoota, M. van der Aueraer, M. Ameloot, A. Stefan, D. Beljonne, Y. Engelborghs, A. Herrmann, K. Muellen, F.C. De Schryver, J. Hofkens, Visualization of membrane rafts using a perylene monoimide derivative and fluorescence lifetime imaging. Bioph J. 93, 2877–2891 (2007)

    Article  Google Scholar 

  71. O. Markova, M. Mukhtarov, E. Real, Y. Jacob, P. Bregestovski, Genetically encoded chloride indicator with improved sensitivity. J. Neurosci. Meth. 170, 67–76 (2008)

    Article  CAS  Google Scholar 

  72. M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F.C. De Schryver, J. Schaffer, C.A.M. Seidel, An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal. Chem. 73, 2078–2086 (2001)

    Article  CAS  Google Scholar 

  73. I. Medina, P. Friedel, C. Rivera, K.T. Kahle, N. Kourdougli, P. Uvarov, C. Pellegrino, Current view on the functional regulation of the neuronal K+-Cl cotransporter KCC2. Front. Cell Neurosci. 8, 1–18 (2014)

    Google Scholar 

  74. N. Melzer, A. Biela, C. Fahlke, Glutamate modifies ion conduction and voltage-dependent gating of excitatory amino acid transporter-associated anion channels. J. Biol. Chem. 278, 50112–50119 (2003)

    Article  CAS  Google Scholar 

  75. M. Mukhtarov, O. Markova, E. Real, Y. Jacob, S. Buldakova, P. Bregestovski, Monitoring of chloride and activity of glycine receptor channels using genetically encoded fluorescent sensors. Phil. Trans. A Math. Phys. Eng. Sci. 366, 3445–3462 (2008)

    Article  CAS  Google Scholar 

  76. D.K. Nair, M. Jose, T. Kuner, W. Zuschratter, R. Hartig, FRET-FLIM at nanometer spectral resolution from living cells. Opt. Expr. 14, 12217–12229 (2006)

    Article  Google Scholar 

  77. J.A. Payne, T.J. Stevenson, L.F. Donaldson, Molecular characterization of a putative K-Cl cotransporter in rat brain, A neuronal-specific isoform. J. Biol. Chem. 271, 16245–16252 (1996)

    Article  CAS  Google Scholar 

  78. T. Price, F. Cervero, M.S. Gold, D.L. Hammond, S.A. Prescott, Chloride regulation in the pain pathway. Brain Res. Rev. 60, 149–170 (2009)

    Article  CAS  Google Scholar 

  79. M. Puskarjov, P. Seja, S.E. Heron, T.C. Williams, F. Ahmad, X. Iona, K.L. Oliver, B.E. Grinton, L. Vutskits, I.E. Scheffer, S. Petrou, P. Blaesse, L.M. Dibbens, S.F. Berkovic, K. Kaila, A variant of KCC2 from patients with febrile seizures impairs neuronal Cl extrusion and dendritic spine formation. EMBO Rep. 15, 723–729 (2014)

    CAS  Google Scholar 

  80. C. Rivera, J. Voipio, J.A. Payne, E. Ruusuvuori, H. Lahtinen, K. Lamsa, U. Pirvola, M. Saarma, K. Kaila, The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999)

    Article  CAS  Google Scholar 

  81. O. Stern, M. Volmer, Über die Abklingungszeit der Fluoreszenz. Phys. Zeitschr. 20, 183–188 (1919)

    CAS  Google Scholar 

  82. C. Stringari, A. Cinquin, O. Cinquinb, M.A. Digman, P.J. Donovan, E. Gratton, Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. PNAS 108, 13582–13587 (2011)

    Article  CAS  Google Scholar 

  83. H. Studier, W. Becker, Megapixel FLIM. Proc. SPIE 8948 (2014)

    Google Scholar 

  84. K. Suhling, P.M.W. French, D. Phillips, Time-resolved fluorescence microscopy. Photochem. Photobiol. Sci. 4, 13–22 (2005)

    Article  CAS  Google Scholar 

  85. K. Suhling, J. Levitt, P.H. Chung, in Time-Resolved Fluorescence Anisotropy Imaging, vol. 3, ed. by Y. Engelborghs, A.J.W.G. Visser. Fluorescence Spectroscopy and Microscopy: Methods and Protocols, Methods in Molecular Biology (Springer, Humana Press, New York City, 2014), pp. 503–519

    Google Scholar 

  86. P. Thomas, T.G. Smart, HEK293 cell line: A vehicle for the expression of recombinant proteins. J. Pharmac. Toxic. Meth. 51, 187–200 (2005)

    Article  CAS  Google Scholar 

  87. V. Untiet, C. Fahlke, P. Kovermann, T. Gensch. (2013) (unpublished)

    Google Scholar 

  88. A.S. Verkman, Development and biological applications of chloride-sensitive fluorescent indicators. Am. J. Cell Physiol. 259, C375–C388 (1990)

    Google Scholar 

  89. A.S. Verkman, Chemical and Gfp-Based Fluorescent Chloride Indicators, Physiology and Pathology of Chloride Transporters and Channels in the Nervous System, Part 2: Current Methods for Studying Chloride Regulation, Chap. 6, pp. 111–123 (2009)

    Google Scholar 

  90. A.S. Verkman, M.C. Sellers, A.C. Chao, T. Leung, R. Ketcham, Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications. Anal. Biochem. 178, 355–361 (1989)

    Article  CAS  Google Scholar 

  91. A. Villoing, M. Ridhoir, B. Cinquin, M. Erard, L. Alvarez, G. Vallverdu, P. Pernot, R. Grailhe, F. Merola, H. Pasquier, Complex fluorescence of the cyan fluorescent protein: Comparisons with the H148D variant and consequences for quantitative cell imaging. Biochem. 47, 12483–12492 (2008)

    Article  CAS  Google Scholar 

  92. J. Voipio, W.F. Boron, S.W. Jones, U. Hopfer, J.A. Payne, K. Kaila, Comment on “local impermeant anions establish the neuronal chloride concentration”. Science 345, 1130 (2014)

    Article  CAS  Google Scholar 

  93. R.M. Wachter, S.J. Remington, Sensitivity of the yellow variant of green fluorescent protein to halides and nitrate. Curr. Biol. 9, R628–R629 (1999)

    Article  CAS  Google Scholar 

  94. R.M. Wachter, M.A. Elsliger, K. Kallio, G.T. Hanson, S.J. Remington, Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 6, 1267–1277 (1998)

    Article  CAS  Google Scholar 

  95. J.I. Wadiche, S.G. Amara, M.P. Kavanaugh, Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995)

    Article  CAS  Google Scholar 

  96. T. Waseem, M. Mukhtarov, S. Buldakova, I. Medina, P. Bregestovski, Genetically encoded Cl-sensor as a tool for monitoring of Cl dependent processes in small neuronal compartments. J. Neurosci. Meth. 193, 14–23 (2010)

    Article  CAS  Google Scholar 

  97. C.D. Wilms, H. Schmidt, J. Eilers, Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calc. 40, 73–79 (2006)

    Article  CAS  Google Scholar 

  98. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984)

    Google Scholar 

  99. N. Winter, P. Kovermann, C. Fahlke, A point mutation associated with episodic ataxia 6 increases glutamate transporter anion currents. Brain 135, 3416–3425 (2012)

    Article  Google Scholar 

  100. Z.Y. Ye, D.P. Li, H.S. Byun, L. Li, H.L. Pan, NKCC1 upregulation disrupts chloride homeostasis in the hypothalamus and increases neuronal activity-sympathetic drive in hypertension. J. Neurosci. 32, 8560–8568 (2012)

    Article  CAS  Google Scholar 

  101. S.-P. Yu, G.A. Kerchner, Endogenous voltage-gated potassium channels in human embryonic kidney (HEK293) cells. J. Neurosc. Res. 52, 612–617 (1998)

    Article  CAS  Google Scholar 

  102. Y. Zeng, L. Jiang, W. Zheng, D. Li, S. Yao, J.Y. Qu, Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging. Opt. Lett. 36, 2236–2238 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gensch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gensch, T., Untiet, V., Franzen, A., Kovermann, P., Fahlke, C. (2015). Determination of Intracellular Chloride Concentrations by Fluorescence Lifetime Imaging. In: Becker, W. (eds) Advanced Time-Correlated Single Photon Counting Applications. Springer Series in Chemical Physics, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-14929-5_4

Download citation

Publish with us

Policies and ethics