Skip to main content

Lipids in Amyloid-β Processing, Aggregation, and Toxicity

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 855))

Abstract

Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer’s disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

Aβ:

Amyloid-β peptide

CMC:

Critical micelle concentration

DHPC:

1,2-dihexanoyl-sn-glycero-3-phosphocholine

GM1:

Monosialotetrahexosyl ganglioside

HDL:

High-density lipoprotein

LRP1:

Low-density lipoprotein receptor-related protein

VLDLR:

Very low-density lipoprotein receptor

References

  • Acharya P, Segall ML, Zaiou M, Morrow J, Weisgraber KH, Phillips MC, Lund-Katz S, Snow J (2002) Comparison of the stabilities and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism. Biochim Biophys Acta 1584(1):9–19

    CAS  PubMed  Google Scholar 

  • Aisenbrey C, Borowik T, Bystrom R, Bokvist M, Lindstrom F, Misiak H, Sani MA, Grobner G (2008) How is protein aggregation in amyloidogenic diseases modulated by biological membranes? Eur Biophys J 37(3):247–255

    CAS  PubMed  Google Scholar 

  • Alberdi E, Sáchez-Gómez MV, Cavaliere F, Pérez-Samartín A, Zugaza JL, Trullas R, Domercq M, Matute C (2010) Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47(3):264–272

    CAS  PubMed  Google Scholar 

  • Aleshkov S, Abraham CR, Zannis VI (1997) Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide Aβ(1–40). Relevance to Alzheimer’s disease. Biochemistry 36(34):10571–10580

    CAS  PubMed  Google Scholar 

  • Alzheimer A (1911) über eigenartige Krankheitsfälle des späteren Alters. Z Gesamte Neurol Psychiatr 4(1):356–385

    Google Scholar 

  • Arispe N, Pollard HB, Rojas E (1993a) Giant multilevel cation channels formed by Alzheimer disease amyloid β-protein [AβP-(1–40)] in bilayer membranes. Proc Natl Acad Sci U S A 90(22):10573–10577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arispe N, Rojas E, Pollard HB (1993b) Alzheimer disease amyloid β protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90(2):567–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atwood CS, Perry G, Smith MA (2003) Cerebral hemorrhage and amyloid-β. Science 299(5609):1014

    CAS  PubMed  Google Scholar 

  • Avdulov NA, Chochina SV, Igbavboa U, O’Hare EO, Schroeder F, Cleary JP, Wood WG (1997) Amyloid β-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. J Neurochem 68(5):2086–2091

    CAS  PubMed  Google Scholar 

  • Bailey JA, Maloney B, Ge Y-W, Lahiri DK (2011) Functional activity of the novel Alzheimer’s amyloid β-peptide interacting domain (AβID) in the APP and BACE1 promoter sequences and implications in activating apoptotic genes and in amyloidogenesis. Gene 488(1–2):13–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, Hansen JC, Sullivan PM, Paul SM (2009) Human APOE isoform-dependent effects on brain β-amyloid levels in PDAPP transgenic mice. J Neurosci 29(21):6771–6779

    CAS  PubMed  Google Scholar 

  • Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar b-amyloid mediates microglial activation. J Neurosci 23(7):2665–2674

    CAS  PubMed  Google Scholar 

  • Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336(6085):1168–1171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baruch-Suchodolsky R, Fischer B (2009) Aβ40, either soluble or aggregated, is a remarkably potent antioxidant in cell-free oxidative systems. Biochemistry 48(20):4354–4370

    CAS  PubMed  Google Scholar 

  • Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM (2006) Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12(7):856–861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beel AJ, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, Jap B, Prestegard JH, Sanders CR (2008) Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor? Biochemistry 47(36):9428–9446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV (2007) Transport pathways for clearance of human Alzheimer’s amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27:909–918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benseny-Cases N, Cocera M, Cladera J (2007) Conversion of non-fibrillar β-sheet oligomers into amyloid fibrils in Alzheimer’s disease amyloid peptide aggregation. Biochem Biophys Res Commun 361:916–921

    CAS  PubMed  Google Scholar 

  • Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. J Am Med Assoc Neurol 71(4):505–508

    Google Scholar 

  • Bodovitz S, Klein WL (1996) Cholesterol modulates a-secretase cleavage of amyloid precursor protein. J Biol Chem 271(8):4436–4440

    CAS  PubMed  Google Scholar 

  • Bokvist M, Groebner G (2007) Misfolding of amyloidogenic proteins at membrane surfaces: the impact of macromolecular crowding. J Am Chem Soc 129(48):14848–14849

    CAS  PubMed  Google Scholar 

  • Bokvist M, Lindstroem F, Watts A, Groebner G (2004) Two types of Alzheimer’s β-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335(4):1039–1049

    CAS  PubMed  Google Scholar 

  • Brouwers N, Sleegers K, Van Broeckhoven C (2008) Molecular genetics of Alzheimer’s disease: an update. Ann Med 40(8):562–583

    CAS  PubMed  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221–17224

    CAS  PubMed  Google Scholar 

  • Bucciantini M, Rigacci S, Stefani M (2014) Amyloid aggregation: role of biological membranes and the aggregated membrane system. J Phys Chem Lett 5(3):517–527

    CAS  Google Scholar 

  • Butterfield SM, Lashuel HA (2010) Amyloidogenic protein–membrane interactions: mechanistic insight from model systems. Angew Chem Int Ed 49(33):5628–5654

    CAS  Google Scholar 

  • Bystroem R, Aisenbrey C, Borowik T, Bokvist M, Lindstroem F, Sani M-A, Olofsson A, Groebner G (2008) Disordered proteins: biological membranes as two-dimensional aggregation matrices. Cell Biochem Biophys 52(3):175–189

    CAS  Google Scholar 

  • Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3:89ra57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cecchi C, Baglioni S, Fiorillo C, Pensalfini A, Liguri G, Nosi D, Rigacci S, Bucciantini M, Stefani M (2005) Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J Cell Sci 118(15):3459–3470

    CAS  PubMed  Google Scholar 

  • Cedazo-Mínguez A, Cowburn RF (2001) Apolipoprotein E: a major piece in the Alzheimer’s disease puzzle. J Cell Mol Med 5(3):254–266

    PubMed  Google Scholar 

  • Chauhan NB (2003) Membrane dynamics, cholesterol homeostasis, and Alzheimer’s disease. J Lipid Res 44(11):2019–2029

    CAS  PubMed  Google Scholar 

  • Chauhan A, Ray I, Chauhan VP (2000) Interaction of amyloid β-protein with anionic phospholipids: possible involvement of Lys28 and C-terminus aliphatic amino acids. Neurochem Res 25(3):423–429

    CAS  PubMed  Google Scholar 

  • Chen J, Li Q, Wang J (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci U S A 108(36):14813–14818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chi EY, Ege C, Winans A, Majewski J, Wu G, Kjaer K, Lee KYC (2008) Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer’s disease amyloid-β peptide. Proteins 72(1):1–24

    CAS  PubMed  Google Scholar 

  • Chochina SV, Avdulov NA, Igbavboa U, Cleary JP, O’Hare EO, Wood WG (2001) Amyloid b-peptide 1–40 increases neuronal membrane fluidity: role of cholesterol and brain region. J Lipid Res 42(8):1292–1297

    CAS  PubMed  Google Scholar 

  • Choo-Smith L-P, Surewicz WK (1997) The interaction between Alzheimer amyloid Aβ(1–40) peptide and ganglioside GM1-containing membranes. FEBS Lett 402(2–3):95–98

    CAS  PubMed  Google Scholar 

  • Choo-Smith L-P, Garzon-Rodriguez W, Glabe CG, Surewicz WK (1997) Acceleration of amyloid fibril formation by specific binding of Aβ-(1–40) peptide to ganglioside-containing membrane vesicles. J Biol Chem 272(37):22987–22990

    CAS  PubMed  Google Scholar 

  • Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-b protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    CAS  PubMed  Google Scholar 

  • Cohen SIA, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M, Dobson CM, Knowles TPJ (2013) Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci U S A 110(24):9758–9763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cole GM, Ard MD (2000) Influence of lipoproteins on microglial degradation of Alzheimer’s amyloid β-protein. Microsc Res Tech 50(4):316–324

    CAS  PubMed  Google Scholar 

  • Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of amyloid β-peptide(1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37(31):11064–11077

    CAS  PubMed  Google Scholar 

  • Conejero-Goldberg C, Gomar JJ, Bobes-Bascaran T, Hyde TM, Kleinman JE, Herman MM, Chen S, Davies P, Goldberg TE (2014) APOE2 enhances neuroprotection against Alzheimer’s disease through multiple molecular mechanisms. Mol Psychiatry 19(11):1243–1250

    CAS  PubMed  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    CAS  PubMed  Google Scholar 

  • Cruts M, Van Broeckhoven C (1998) Molecular genetics of Alzheimer’s disease. Ann Med 30(6):560–565

    CAS  PubMed  Google Scholar 

  • Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 101(7):2070–2075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahse K, Garvey M, Kovermann M, Vogel A, Balbach J, Fandrich M, Fahr A (2010) DHPC strongly affects the structure and oligomerization propensity of Alzheimer’s Aβ(1–40) peptide. J Mol Biol 403(4):643–659

    CAS  PubMed  Google Scholar 

  • Davis CH, Berkowitz ML (2009a) Interaction between amyloid-b (1–42) peptide and phospholipid bilayers: a molecular dynamics study. Biophys J 96(3):785–797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis CH, Berkowitz ML (2009b) Structure of the amyloid-b (1b-42) monomer absorbed to model phospholipid bilayers: a molecular dynamics study. J Phys Chem B 113(43):14480–14486

    CAS  PubMed  Google Scholar 

  • de Planque MRR, Raussens V, Contera SA, Rijkers DTS, Liskamp RMJ, Ruysschaert J-M, Ryan JF, Separovic F, Watts A (2007) β-sheet structured β-amyloid(1–40) perturbs phosphatidylcholine model membranes. J Mol Biol 368(4):982–997

    PubMed  Google Scholar 

  • Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV (2004) LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43(3):333–344

    CAS  PubMed  Google Scholar 

  • Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) ApoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest 118:4002–4013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280(17):17294–17300

    CAS  PubMed  Google Scholar 

  • Deshpande A, Mina E, Glabe C, Busciglio J (2006) Different conformations of amyloid β induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 26(22):6011–6018

    CAS  PubMed  Google Scholar 

  • Di Scala C, Chahinian H, Yahi N, Garmy N, Fantini J (2014a) Interaction of Alzheimer’s β-amyloid peptides with cholesterol: mechanistic insights into amyloid pore formation. Biochemistry 53(28):4489–4502

    PubMed  Google Scholar 

  • Di Scala C, Troadec J-D, Lelièvre C, Garmy N, Fantini J, Chahinian H (2014b) Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer β-amyloid peptide. J Neurochem 128(1):186–195

    PubMed  Google Scholar 

  • Diaz JC, Linnehan J, Pollard H, Arispe N (2006) Histidines 13 and 14 in the Aβ sequence are targets for inhibition of Alzheimer’s disease Aβ ion channel and cytotoxicity. Biol Res 39:447–460

    CAS  PubMed  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890

    CAS  PubMed  Google Scholar 

  • Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, He F, Sun X, Thomas RG, Aisen PS, Siemers E, Sethuraman G, Mohs R (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369(4):341–350

    CAS  PubMed  Google Scholar 

  • Dovidchenko NV, Finkelstein AV, Galzitskaya OV (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid protofibril formation. J Phys Chem B 118(5):1189–1197

    CAS  PubMed  Google Scholar 

  • Eckert GP, Cairns NJ, Maras A, Gattaz WF, Müller WE (2000) Cholesterol modulates the membrane- disordering effects of β-amyloid peptides in the hippocampus: specific changes in Alzheimer’s disease. Dement Geriatr Cogn Disord 11(4):181–186

    CAS  PubMed  Google Scholar 

  • Eckert GP, Wood WG, Muller WE (2010) Lipid membranes and β-amyloid: a harmful connection. Curr Protein Pept Sci 11(5):319–325

    CAS  PubMed  Google Scholar 

  • Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC, Ozols VV, Jessing KW, Zavitz KH, Koo EH, Golde TE (2003) NSAIDs and enantiomers of flurbiprofen target g-secretase and lower Aβ42 in vivo. J Clin Invest 112(3):440–449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esler WP, Stimson ER, Jennings JM, Vinters HV, Ghilardi JR, Lee JP, Mantyh PW, Maggio JE (2000) Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry 39(21):6288–6295

    CAS  PubMed  Google Scholar 

  • Fantini J, Garmy N, Mahfoud R, Yahi N (2002) Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev Mol Med 4(27):1–22

    PubMed  Google Scholar 

  • Fantini J, Di Scala C, Yahi N, Troadec J-D, Sadelli K, Chahinian H, Garmy N (2014) Bexarotene blocks calcium-permeable ion channels formed by neurotoxic Alzheimer’s β-amyloid peptides. ACS Chem Neurosci 5(3):216–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fassbender K, Simons M, Bergmann C, Stroick M, Lütjohann D, Keller P, Runz H, Kühl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T (2001) Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc Natl Acad Sci U S A 98(10):5856–5861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fezoui Y, Teplow DB (2002) Kinetic studies of amyloid β-protein fibril assembly: differential effects of α-helix stabilization. J Biol Chem 277(40):36948–36954

    CAS  PubMed  Google Scholar 

  • Fezoui Y, Hartley DM, Walsh DM, Selkoe DJ, Osterhout JJ, Teplow DB (2000) A de novo designed helix-turn-helix peptide forms non-toxic amyloid fibrils. Nat Struct Biol 7:1095–1099

    CAS  PubMed  Google Scholar 

  • Foley P (2010) Lipids in Alzheimer’s disease: a century-old story. Biochim Biophys Acta 1801(8):750–753

    CAS  PubMed  Google Scholar 

  • Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM (1999) The role of cholesterol in the biosynthesis of β-amyloid. Neuroreport 10(8):1699–1705

    CAS  PubMed  Google Scholar 

  • Gandy S, Simon AJ, Steele JW, Lublin AL, Lah JJ, Walker LC, Levey AI, Krafft GA, Levy E, Checler F, Glabe C, Bilker WB, Abel T, Schmeidler J, Ehrlich ME (2010) Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-β oligomers. Ann Neurol 68(2):220–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garvey M, Tepper K, Haupt C, Knuepfer U, Klement K, Meinhardt J, Horn U, Balbach J, Faendrich M (2011) Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer’s Aβ peptide. Biochem Biophys Res Commun 409(3):385–388

    CAS  PubMed  Google Scholar 

  • Ghiso J, Frangione B (2002) Amyloidosis and Alzheimer’s disease. Adv Drug Deliv Rev 54(12):1539–1551

    CAS  PubMed  Google Scholar 

  • Gilbert BJ (2013) The role of amyloid β in the pathogenesis of Alzheimer’s disease. J Clin Pathol 66(5):362–366

    CAS  PubMed  Google Scholar 

  • Golde TE, Eckman CB (2001) Cholesterol modulation as an emerging strategy for the treatment of Alzheimer’s disease. Drug Discov Today 6(20):1049–1055

    CAS  PubMed  Google Scholar 

  • Golde TE, Petrucelli L, Lewis J (2010) Targeting Ab and tau in Alzheimer’s disease, an early interim report. Exp Neurol 223(2):252–266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Good TA, Murphy RM (1995) Aggregation state-dependent binding of β-amyloid peptide to protein and lipid components of rat cortical homogenates. Biochem Biophys Res Commun 207(1):209–215

    CAS  PubMed  Google Scholar 

  • Grootendorst J, Bour A, Vogel E, Kelche C, Sullivan PM, Dodart J-C, Bales K, Mathis C (2005) Human apoE targeted replacement mouse lines: h-apoE4 and h-apoE3 mice differ on spatial memory performance and avoidance behavior. Behav Brain Res 159(1):1–14

    CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid [β]-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    CAS  PubMed  Google Scholar 

  • Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ (1992) Targeting of cell-surface b-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357(6378):500–503

    CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  • Harper JD, Lansbury PT (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407

    CAS  PubMed  Google Scholar 

  • Hartmann T, Kuchenbecker J, Grimm MOW (2007) Alzheimer’s disease: the lipid connection. J Neurochem 103:159–170

    CAS  PubMed  Google Scholar 

  • Hatters DM, Peters-Libeu CA, Weisgraber KH (2006) Apolipoprotein E structure: insights into function. Trends Biochem Sci 31(8):445–454

    CAS  PubMed  Google Scholar 

  • Hauser PS, Ryan RO (2013) Impact of apolipoprotein E on Alzheimer’s disease. Curr Alzheim Res 10(8):809–817

    CAS  Google Scholar 

  • Hayashi H, Kimura N, Yamaguchi H, Hasegawa K, Yokoseki T, Shibata M, Yamamoto N, Michikawa M, Yoshikawa Y, Terao K, Matsuzaki K, Lemere CA, Selkoe DJ, Naiki H, Yanagisawa K (2004) A seed for Alzheimer amyloid in the brain. J Neurosci 24(20):4894–4902

    CAS  PubMed  Google Scholar 

  • Holtzman DM (2001) Role of apoe/Aβ interactions in the pathogenesis of Alzheimer’s disease and cerebral amyloid angiopathy. J Mol Neurosci 17:147–155

    CAS  PubMed  Google Scholar 

  • Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 97:2892–2897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong S, Ostaszewski Beth L, Yang T, O’ Malley TT, Jin M, Yanagisawa K, Li S, Bartels T, Selkoe DJ (2014) Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 82(2):308–319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hooper N, Trew A, Parkin E, Turner A (2002) The role of proteolysis in Alzheimer’s disease. In: Langner J, Siegfried, A (ed) Cellular peptidases in immune functions and diseases 2, vol 477. Advances in experimental medicine and biology. Springer, New York, pp 379–390

    Google Scholar 

  • Hou L, Shao H, Zhang Y, Li H, Menon NK, Neuhaus EB, Brewer JM, Ray DG, Vitek MP, Iwashita T, Makula RA, Przybyla AB, Zagorski MG (2004) Solution NMR studies of the Aβ(1–40) and Aβ(1–42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J Am Chem Soc 126:1992–2005

    CAS  PubMed  Google Scholar 

  • Igbavboa U, Sun GY, Weisman GA, He Y, Wood WG (2009) Amyloid β-protein stimulates trafficking of cholesterol and caveolin-1 from the plasma membrane to the Golgi complex in mouse primary astrocytes. Neuroscience 162(2):328–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang H, Arce FT, Ramachandran S, Capone R, Azimova R, Kagan BL, Nussinov R, Lal R (2010) Truncated β-amyloid peptide channels provide an alternative mechanism for Alzheimer’s disease and down syndrome. Proc Natl Acad Sci U S A 107(14):6538–6543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang H, Teran Arce F, Ramachandran S, Kagan BL, Lal R, Nussinov R (2014) Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs. Chem Soc Rev 43(19):6750–6764

    CAS  PubMed  Google Scholar 

  • Kakio A, S-i N, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2001) Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 276(27):24985–24990

    CAS  PubMed  Google Scholar 

  • Kakio A, S-i N, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2002) Interactions of Amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41(23):7385–7390

    CAS  PubMed  Google Scholar 

  • Karran E, Mercken M, Strooper BD (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698–712

    CAS  PubMed  Google Scholar 

  • Kato-Negishi M, Muramoto K, Kawahara M, Hosoda R, Kuroda Y, Ichikawa M (2003) Bicuculline induces synapse formation on primary cultured accessory olfactory bulb neurons. Eur J Neurosci 18(6):1343–1352

    PubMed  Google Scholar 

  • Kawahara M, Ohtsuka I, Yokoyama S, Kato-Negishi M, Sadakane Y (2011) Membrane incorporation, channel formation, and disruption of calcium homeostasis by Alzheimer’s β-amyloid protein. Int J Alzheimers Dis 2011:17

    Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    CAS  PubMed  Google Scholar 

  • Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279(45):46363–46366

    CAS  PubMed  Google Scholar 

  • Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C (2009) Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284(7):4230–4237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kepp KP (2012) Bioinorganic chemistry of Alzheimer’s disease. Chem Rev 112(10):5193–5239

    CAS  PubMed  Google Scholar 

  • Kim S, Jeon T-J, Oberai A, Yang D, Schmidt JJ, Bowie JU (2005) Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc Natl Acad Sci U S A 102(40):14278–14283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3):287–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kivipelto M, Helkala E-L, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A (2001) Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 322(7300):1447–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klement K, Wieligmann K, Meinhardt J, Hortschansky P, Richter W, Faendrich M (2007) Effect of different salt Ions on the propensity of aggregation and on the structure of Alzheimer’s Aβ(1–40) amyloid fibrils. J Mol Biol 373(5):1321–1333

    CAS  PubMed  Google Scholar 

  • Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-b peptides. Nat Med 10(7):719–726

    CAS  PubMed  Google Scholar 

  • Korwek K, Trotter J, LaDu M, Sullivan P, Weeber E (2009) ApoE isoform-dependent changes in hippocampal synaptic function. Mol Neurodegener 4(1):21

    PubMed Central  PubMed  Google Scholar 

  • Kremer JJ, Murphy RM (2003) Kinetics of adsorption of β-amyloid peptide Aβ(1–40) to lipid bilayers. J Biochem Biophys Meth 57(2):159–169

    CAS  PubMed  Google Scholar 

  • Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM (2000) Correlation of β-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 39(33):10309–10318

    CAS  PubMed  Google Scholar 

  • Kremer JJ, Sklansky DJ, Murphy RM (2001) Profile of changes in lipid bilayer structure caused by β-amyloid peptide. Biochemistry 40(29):8563–8571

    CAS  PubMed  Google Scholar 

  • Krishnaswamy S, Verdile G, Groth D, Kanyenda L, Martins RN (2009) The structure and function of Alzheimer’s g secretase enzyme complex. Crit Rev Clin Lab Sci 46(5–6):282–301

    CAS  PubMed  Google Scholar 

  • Kukar TL, Ladd TB, Bann MA, Fraering PC, Narlawar R, Maharvi GM, Healy B, Chapman R, Welzel AT, Price RW, Moore B, Rangachari V, Cusack B, Eriksen J, Jansen-West K, Verbeeck C, Yager D, Eckman C, Ye W, Sagi S, Cottrell BA, Torpey J, Rosenberry TL, Fauq A, Wolfe MS, Schmidt B, Walsh DM, Koo EH, Golde TE (2008) Substrate-targeting ɣ-secretase modulators. Nature 453(7197):925–929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kukar TL, Ladd TB, Robertson P, Pintchovski SA, Moore B, Bann MA, Ren Z, Jansen-West K, Malphrus K, Eggert S, Maruyama H, Cottrell BA, Das P, Basi GS, Koo EH, Golde TE (2011) Lysine 624 of the amyloid precursor protein (APP) is a critical determinant of amyloid β peptide length: support for a sequential model of γ-secretase intramembrane proteolysis and regulation by the amyloid β precursor protein (APP) juxtamembrane region. J Biol Chem 286(46):39804–39812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuo Y-M, Emmerling MR, Bisgaier CL, Essenburg AD, Lampert HC, Drumm D, Roher AE (1998) Elevated low-density lipoprotein in Alzheimer’s disease correlates with brain Aβ 1–42 levels. Biochem Biophys Res Commun 252(3):711–715

    CAS  PubMed  Google Scholar 

  • Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807

    CAS  PubMed  Google Scholar 

  • LaDu MJ, Falduto MT, Manelli AM, Reardon CA, Getz GS, Frail DE (1994) Isoform-specific binding of apolipoprotein E to β-amyloid. J Biol Chem 269(38):23403–23406

    CAS  PubMed  Google Scholar 

  • Lal R, Lin H, Quist AP (2007) Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta 1768(8):1966–1975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lannfelt L, Moller C, Basun H, Osswald G, Sehlin D, Satlin A, Logovinsky V, Gellerfors P (2014) Perspectives on future Alzheimer therapies: amyloid-β protofibrils – a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimer Res Ther 6(2):16

    Google Scholar 

  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418(6895):291–291

    CAS  PubMed  Google Scholar 

  • Lee S-J, Liyanage U, Bickel PE, Xia W, Lansbury PT, Kosik KS (1998) A detergent-insoluble membrane compartment contains Aβ in vivo. Nat Med 4(6):730–734

    CAS  PubMed  Google Scholar 

  • Li Y, Lu W, Marzolo MP, Bu G (2001) Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J Biol Chem 276(21):18000–18006

    CAS  PubMed  Google Scholar 

  • Lin HAI, Bhatia R, Lal R (2001) Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15(13):2433–2444

    CAS  PubMed  Google Scholar 

  • Lu J-X, Qiang W, Yau W-M, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268. doi:10.1016/j.cell.2013.1008.1035

    CAS  PubMed  Google Scholar 

  • Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-b(1–42) fibrils. Proc Natl Acad Sci U S A 102(48):17342–17347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630

    CAS  PubMed  Google Scholar 

  • Mahley RW, Weisgraber KH, Huang Y (2006) Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A 103(15):5644–5651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maltseva E, Kerth A, Blume A, Möhwald H, Brezesinski G (2005) Adsorption of amyloid β (1–40) peptide at phospholipid monolayers. ChemBioChem 6(10):1817–1824

    CAS  PubMed  Google Scholar 

  • Mandal PK, Pettegrew JW (2004) Alzheimer’s disease: NMR studies of asialo (GM1) and trisialo (GT1b) ganglioside interactions with Aβ(1–40) peptide in a membrane mimic environment. Neurochem Res 29(2):447–453

    CAS  PubMed  Google Scholar 

  • Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, Van Gelder P, Hartmann D, D’Hooge R, De Strooper B, Schymkowitz J, Rousseau F (2008) Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27(1):224–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mason RP, Estermyer JD, Kelly JF, Mason PE (1996) Alzheimer’s disease amyloid β peptide 25–35 is localized in the membrane hydrocarbon core: x-ray diffraction analysis. Biochem Biophys Res Commun 222(1):78–82

    CAS  PubMed  Google Scholar 

  • Mason RP, Jacob RF, Walter MF, Mason PE, Avdulov NA, Chochina SV, Igbavboa U, Wood WG (1999) Distribution and fluidizing action of soluble and aggregated amyloid β-peptide in rat synaptic plasma membranes. J Biol Chem 274(26):18801–18807

    CAS  PubMed  Google Scholar 

  • Matsuzaki K (2007) Physicochemical interactions of amyloid β-peptide with lipid bilayers. Biochim Biophys Acta Biomembr 1768(8):1935–1942

    CAS  Google Scholar 

  • Matsuzaki K (2011) Formation of toxic amyloid fibrils by amyloid β-protein on ganglioside clusters. Int J Alzheimers Dis 956104:1–7

    Google Scholar 

  • Matsuzaki K, Horikiri C (1999) Interactions of amyloid β-Peptide (1–40) with ganglioside-containing membranes. Biochemistry 38(13):4137–4142

    CAS  PubMed  Google Scholar 

  • Matsuzaki K, Kato K, Yanagisawa K (2010) Aβ polymerization through interaction with membrane gangliosides. Biochim Biophys Acta Mol Cell Biol L 1801(8):868–877

    CAS  Google Scholar 

  • Mattson MP (1997) Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77(4):1081–1132

    CAS  PubMed  Google Scholar 

  • Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330(6012):1774

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGuinness B, Passmore P (2010) Can statins prevent or help treat Alzheimer’s disease? J Alzheimers Dis 20(3):925–933

    PubMed  Google Scholar 

  • McLaurin J, Chakrabartty A (1996) Membrane disruption by Alzheimer β-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. Implications for neurotoxicity. J Biol Chem 271(43):26482–26489

    CAS  PubMed  Google Scholar 

  • McLaurin J, Franklin T, Chakrabartty A, Fraser PE (1998) Phosphatidylinositol and inositol involvement in Alzheimer amyloid-β fibril growth and arrest. J Mol Biol 278(1):183–194

    CAS  PubMed  Google Scholar 

  • McLaurin J, Yang D, Yip CM, Fraser PE (2000) Review: modulating factors in amyloid-β fibril formation. J Struct Biol 130(2–3):259–270

    CAS  PubMed  Google Scholar 

  • Meinhardt J, Sachse C, Hortschansky P, Grigorieff N, Fändrich M (2009) Ab(1–40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. J Mol Biol 386(3):869–877

    CAS  PubMed  Google Scholar 

  • Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard JB, Cohen SIA, Dobson CM, Linse S, Knowles TPJ (2014) Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc Natl Acad Sci U S A 111(26):9384–9389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyashita N, Straub JE, Thirumalai D (2009) Structures of β-amyloid peptide 1–40, 1–42, and 1–55, the 672–726 fragment of APP-in a membrane environment with implications for interactions with γ-Secretase. J Am Chem Soc 131(49):17843–17852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morgado I, Faendrich M (2011) Assembly of Alzheimer’s Aβ peptide into nanostructured amyloid fibrils. Curr Opin Colloid Interface Sci 16(6):508–514

    CAS  Google Scholar 

  • Mulder SD, Nielsen HM, Blankenstein MA, Eikelenboom P, Veerhuis R (2014) Apolipoproteins E and J interfere with amyloid-β uptake by primary human astrocytes and microglia in vitro. Glia 62(4):493–503

    PubMed  Google Scholar 

  • Muller WE, Eckert GP, Scheuer K, Cairns NJ, Maras A, Gattaz WF (1998) Effects of β-amyloid peptides on the fluidity of membranes from frontal and parietal lobes of human brain. High potencies of Aβ 1–42 and Aβ 1–43. Amyloid 5(1):10–15

    CAS  PubMed  Google Scholar 

  • Murphy RM (2007) Kinetics of amyloid formation and membrane interaction with amyloidogenic proteins. Biochim Biophys Acta 1768(8):1923–1934

    CAS  PubMed  Google Scholar 

  • Nagarajan S, Ramalingam K, Neelakanta Reddy P, Cereghetti DM, Padma Malar EJ, Rajadas J (2008) Lipid-induced conformational transition of the amyloid core fragment Aβ(28–35) and its A30G and A30I mutants. FEBS J 275(10):2415–2427

    CAS  PubMed  Google Scholar 

  • Okada T, Ikeda K, Wakabayashi M, Ogawa M, Matsuzaki K (2008) Formation of toxic Aβ(1–40) fibrils on GM1 ganglioside-containing membranes mimicking lipid rafts: polymorphisms in Aβ(1–40) fibrils. J Mol Biol 382(4):1066–1074

    CAS  PubMed  Google Scholar 

  • Oshima N, Morishima-Kawashima M, Yamaguchi H, Yoshimura M, Sugihara S, Khan K, Games D, Schenk D, Ihara Y (2001) Accumulation of amyloid β-protein in the low-density membrane domain accurately reflects the extent of β-amyloid deposition in the brain. Am J Pathol 158(6):2209–2218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pai AS, Rubinstein I, Oniuksel H (2006) PEGylated phospholipid nanomicelles interact with β-amyloid (1–42) and mitigate its β-sheet formation, aggregation and neurotoxicity in vitro. Peptides 27(11):2858–2866

    CAS  PubMed  Google Scholar 

  • Palop JJ, Mucke L (2010) Amyloid-β-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13(7):812–818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pauwels K, Williams TL, Morris KL, Jonckheere W, Vandersteen A, Kelly G, Schymkowitz J, Rousseau F, Pastore A, Serpell LC, Broersen K (2012) Structural basis for increased toxicity of pathological Aβ42: aβ40 ratios in Alzheimer disease. J Biol Chem 287(8):5650–5660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pellarin R, Caflisch A (2006) Interpreting the aggregation kinetics of amyloid peptides. J Mol Biol 360(4):882–892

    CAS  PubMed  Google Scholar 

  • Peters I, Igbavboa U, Schutt T, Haidari S, Hartig U, Rosello X, Bottner S, Copanaki E, Deller T, Kogel D, Wood WG, Muller WE, Eckert GP (2009) The interaction of β-amyloid protein with cellular membranes stimulates its own production. Biochim Biophys Acta 1788(5):964–972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s b-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99(26):16742–16747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-Propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307(5707):262–265

    CAS  PubMed  Google Scholar 

  • Phillips MC (2013) New insights into the determination of HDL structure by apolipoproteins: thematic review series: high density lipoprotein structure, function, and metabolism. J Lipid Res 54(8):2034–2048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phillips MC (2014) Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 66(9):616–623

    CAS  PubMed  Google Scholar 

  • Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH (1987) Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B, E(LDL) receptors in the brain. J Biol Chem 262(29):14352–14360

    CAS  PubMed  Google Scholar 

  • Pollard HB, Rojas E, Arispe N (1993) A new hypothesis for the mechanism of amyloid toxicity, based on the calcium channel activity of amyloid β protein (AβP) in phospholipid bilayer membranes. Ann N Y Acad Sci 695(1):165–168

    CAS  PubMed  Google Scholar 

  • Posse de Chaves E, Sipione S (2010) Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 584(9):1748–1759

    CAS  PubMed  Google Scholar 

  • Prangkio P, Yusko EC, Sept D, Yang J, Mayer M (2012) Multivariate analyses of amyloid-β oligomer populations indicate a connection between pore formation and cytotoxicity. PLoS ONE 7(10):e47261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proitsi P, Lupton M, Velayudhan L, Newhouse S, Fogh I, Tsolaki M, Daniilidou M, Pritchard M, Kloszewska I, Soininen H, Mecocci P, Vellas B, Williams J, Stewart R, Sham P, Lovestone S, Powell J, Alzheimer’s Disease Neuroimaging I, GC (2014) Genetic predisposition to increased blood cholesterol and triglyceride lipid levels and risk of Alzheimer disease: a Mendelian randomization analysis. PLoS Med 11(9):e1001713

    PubMed Central  PubMed  Google Scholar 

  • Puglielli L, Konopka G, Pack-Chung E, Ingano LAM, Berezovska O, Hyman BT, Chang TY, Tanzi RE, Kovacs DM (2001) Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid [beta]-peptide. Nat Cell Biol 3(10):905–912

    CAS  PubMed  Google Scholar 

  • Qiu L, Lewis A, Como J, Vaughn MW, Huang J, Somerharju P, Virtanen J, Cheng KH (2009) Cholesterol modulates the interaction of β-amyloid peptide with lipid bilayers. Biophys J 96(10):4299–4307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344

    CAS  PubMed  Google Scholar 

  • Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102(30):10427–10432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rebeck GW, Kindy M, LaDu MJ (2002) Apolipoprotein E and Alzheimer’s disease: the protective effects of ApoE2 and E3. J Alzheimers Dis 4(3):145–154

    CAS  PubMed  Google Scholar 

  • Reed MN, Hofmeister JJ, Jungbauer L, Welzel AT, Yu C, Sherman MA, Lesne S, LaDu MJ, Walsh DM, Ashe KH, Cleary JP (2011) Cognitive effects of cell-derived and synthetically derived Aβ oligomers. Neurobiol Aging 32(10):1784–1794

    Google Scholar 

  • Refolo LM, Pappolla MA, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7(4):321–331

    CAS  PubMed  Google Scholar 

  • Reitz C, Tang MX, Luchsinger J, Mayeux R (2004) Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch Neurol 61(5):705–714

    PubMed Central  PubMed  Google Scholar 

  • Relini A, Cavalleri O, Rolandi R, Gliozzi A (2009) The two-fold aspect of the interplay of amyloidogenic proteins with lipid membranes. Chem Phys Lipids 158(1):1–9

    CAS  PubMed  Google Scholar 

  • Richardson K, Schoen M, French B, Umscheid CA, Mitchell MD, Arnold SE, Heidenreich PA, Rader DJ, deGoma EM (2013) Statins and cognitive function: a systematic review. Ann Intern Med 159(10):688–697

    PubMed  Google Scholar 

  • Riddell DR, Christie G, Hussain I, Dingwall C (2001) Compartmentalization of β-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 11(16):1288–1293

    CAS  PubMed  Google Scholar 

  • Rockwood K, Kirkland S, Hogan DB, MacKnight C, Merry H, Verreault R, Wolfson C, McDowell I (2002) Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 59(2):223–227

    PubMed  Google Scholar 

  • Roher AE, Palmer KC, Yurewicz EC, Ball MJ, Greenberg BD (1993) Morphological and biochemical analyses of amyloid plaque core proteins purified from Alzheimer disease brain tissue. J Neurochem 61(5):1916–1926

    CAS  PubMed  Google Scholar 

  • Roses MDAD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47(1):387–400

    CAS  PubMed  Google Scholar 

  • Sachse C, Fandrich M, Grigorieff N (2008) Paired β-sheet structure of an A(1–40) amyloid fibril revealed by electron microscopy. Proc Natl Acad Sci U S A 105(21):7462–7466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saher G, Brugger B, Lappe-Siefke C, Mobius W, R-i T, Wehr MC, Wieland F, Ishibashi S, Nave K-A (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8(4):468–475

    CAS  PubMed  Google Scholar 

  • Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43(8):1467–1472

    CAS  PubMed  Google Scholar 

  • Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Pericak-Vance MA, Goldgaber D, Roses AD (1993) Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset alzheimer disease. Proc Natl Acad Sci U S A 90(20):9649–9653

    Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schiossmacher M, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 359(6393):325–327

    CAS  PubMed  Google Scholar 

  • Shafrir Y, Durell S, Arispe N, Guy HR (2010) Models of membrane-bound Alzheimer’s Aβ peptide assemblies. Protein: Struct Funct Bioinf 78(16):3473–3487

    CAS  Google Scholar 

  • Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer’s amyloid-β(1–40) peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. J Clin Invest 106(12):1489–1499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shie FS, Jin LW, Cook DG, Leverenz JB, LeBoeuf RC (2002) Diet-induced hypercholesterolemia enhances brain Aβ accumulation in transgenic mice. Neuroreport 13(4):455–459

    CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    CAS  PubMed  Google Scholar 

  • Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K (1998) Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 95(11):6460–6464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simons M, Schwarzler F, Lutjohann D, von Bergmann K, Beyreuther K, Dichgans J, Wormstall H, Hartmann T, Schulz JB (2002) Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 52(3):346–350

    CAS  PubMed  Google Scholar 

  • Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS ONE 3(5):e9505

    Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60

    CAS  PubMed  Google Scholar 

  • Sparks DL, Sabbagh MN, Connor DJ, Lopez J, Launer LJ, Browne P, Wasser D, Johnson-Traver S, Lochhead J, Ziolwolski C (2005) Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol 62(5):753–757

    PubMed  Google Scholar 

  • Stefani M (2010) Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. FEBS J 277(22):4602–4613

    CAS  PubMed  Google Scholar 

  • Stefani M, Dobson C (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81(11):678–699

    CAS  PubMed  Google Scholar 

  • Straub JE, Thirumalai D (2014) Membrane-protein interactions are key to understanding amyloid formation. J Phys Chem Lett 5(3):633–635

    CAS  Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90(5):1977–1981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stroud JC, Liu C, Teng PK, Eisenberg D (2012) Toxic fibrillar oligomers of amyloid-b have cross-b structure. Proc Natl Acad Sci U S A 109(20):7717–7722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739

    CAS  PubMed  Google Scholar 

  • Suri S, Heise V, Trachtenberg AJ, Mackay CE (2013) The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE e2. Neurosci Biobehav Rev 37(10, Part 2):2878–2886

    CAS  PubMed  Google Scholar 

  • Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y (2009) g-secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J Neurosci 29(41):13042–13052

    CAS  PubMed  Google Scholar 

  • Tamamizu-Kato S, Cohen JK, Drake CB, Kosaraju MG, Drury J, Narayanaswami V (2008) Interaction with amyloid β peptide compromises the lipid binding function of apolipoprotein E. Biochemistry 47(18):5225–5234

    CAS  PubMed  Google Scholar 

  • Teplow DB, Lazo ND, Bitan G, Bernstein S, Wyttenbach T, Bowers MT, Baumketner A, Shea J-E, Urbanc B, Cruz L, Borreguero J, Stanley HE (2006) Elucidating amyloid β-protein folding and assembly: a multidisciplinary approach. Acc Chem Res 39(9):635–645

    CAS  PubMed  Google Scholar 

  • Terzi E, Holzemann G, Seelig J (1995) Self-association of β-amyloid peptide (1–40) in solution and binding to lipid membranes. J Mol Biol 252(5):633–642

    CAS  PubMed  Google Scholar 

  • Terzi E, Holzemann G, Seelig J (1997) Interaction of Alzheimer β-amyloid peptide(1–40) with lipid membranes. Biochemistry 36(48):14845–14852

    CAS  PubMed  Google Scholar 

  • Tiraboschi P, Hansen LA, Masliah E, Alford M, Thal LJ, Corey-Bloom J (2004) Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology 62(11):1977–1983

    CAS  PubMed  Google Scholar 

  • Tofoleanu F, Buchete N-V (2012) Alzheimer Aβ peptide interactions with lipid membranes: fibrils, oligomers and polymorphic amyloid channels. Prion 6(4):339–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokuda T, Calero M, Matsubara E, Vidal R, Kumar A, Permanne B, Zlokovic B, Smith JD, Ladu MJ, Rostagno A, Frangione B, Ghiso J (2000) Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid β peptides. Biochem J 348(2):359–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomaselli S, Esposito V, Vangone P, van Nuland NAJ, Bonvin AMJJ, Guerrini R, Tancredi T, Temussi PA, Picone D (2006) The α-to-β conformational transition of Alzheimer’s Aβ-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of β conformation seeding. ChemBioChem 7(2):257–267

    CAS  PubMed  Google Scholar 

  • Utsumi M, Yamaguchi Y, Sasakawa H, Yamamoto N, Yanagisawa K, Kato K (2009) Up-and-down topological mode of amyloid b-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters. Glycoconj J 26(8):999–1006

    CAS  PubMed  Google Scholar 

  • Valincius G, Heinrich F, Budvytyte R, Vanderah DJ, McGillivray DJ, Sokolov Y, Hall JE, Loesche M (2008) Soluble amyloid β-oligomers affect dielectric membrane properties by bilayer insertion and domain formation: implications for cell toxicity. Biophys J 95(10):4845–4861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verdier Y, Zarándi M, Penke B (2004) Amyloid β-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J Pept Sci 10(5):229–248

    CAS  PubMed  Google Scholar 

  • Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10(3):241–252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, Bu G, Frieden C, Holtzman DM (2013) ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci U S A 110:E1807–E1816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vetrivel KS, Thinakaran G (2010) Membrane rafts in Alzheimer’s disease β-amyloid production. Biochim Biophys Acta 1801(8):860–867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vivekanandan S, Brender JR, Lee SY, Ramamoorthy A (2011) A partially folded structure of amyloid-β(1–40) in an aqueous environment. Biochem Biophys Res Commun 411(2):312–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wahlström A, Hugonin L, Perálvarez-Marín A, Jarvet J, Gräslund A (2008) Secondary structure conversions of Alzheimer’s Aβ(1–40) peptide induced by membrane-mimicking detergents. FEBS J 275(20):5117–5128

    PubMed  Google Scholar 

  • Wakabayashi M, Okada T, Kozutsumi Y, Matsuzaki K (2005) GM1 ganglioside-mediated accumulation of amyloid b-protein on cell membranes. Biochem Biophys Res Commun 328(4):1019–1023

    CAS  PubMed  Google Scholar 

  • Walsh DM, Selkoe DJ (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11:213–228

    CAS  PubMed  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539

    CAS  PubMed  Google Scholar 

  • Weisgraber KH (1994) Apolipoprotein E: structure-function relationships. Adv Protein Chem 45:249–302

    CAS  PubMed  Google Scholar 

  • Wetzel R (2006) Kinetics and thermodynamics of amyloid fibril assembly. Acc Chem Res 39(9):671–679

    CAS  PubMed  Google Scholar 

  • Wildsmith K, Holley M, Savage J, Skerrett R, Landreth G (2013) Evidence for impaired amyloid β clearance in Alzheimer’s disease. Alzheimer Res Ther 5(4):33

    CAS  Google Scholar 

  • William Rebeck G, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11(4):575–580

    Google Scholar 

  • Wisniewski T, Castano EM, Golabek A, Vogel T, Frangione B (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 145(5):1030–1035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittnam JL, Portelius E, Zetterberg H, Gustavsson MK, Schilling S, Koch B, Demuth H-U, Blennow K, Wirths O, Bayer TA (2012) Pyroglutamate amyloid β (Aβ) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J Biol Chem 287(11):8154–8162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57(10):1439–1443

    CAS  PubMed  Google Scholar 

  • Wood WG, Schroeder F, Igbavboa U, Avdulov NA, Chochina SV (2002) Brain membrane cholesterol domains, aging and amyloid β-peptides. Neurobiol Aging 23(5):685–694

    CAS  PubMed  Google Scholar 

  • Xu Y, Shen J, Luo X, Zhu W, Chen K, Ma J, Jiang H (2005) Conformational transition of amyloid β-peptide. Proc Natl Acad Sci U S A 102:5403–5407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xue W-F, Homans SW, Radford SE (2008) Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci U S A 105(26):8926–8931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yagi-Utsumi M, Kameda T, Yamaguchi Y, Kato K (2010) NMR characterization of the interactions between lyso-GM1 aqueous micelles and amyloid β. FEBS Lett 584(4):831–836

    CAS  PubMed  Google Scholar 

  • Yamaguchi H, Maat-Schieman ML, van Duinen SG, Prins FA, Neeskens P, Natte R, Roos RA (2000) Amyloid β protein (Aβ) starts to deposit as plasma membrane-bound form in diffuse plaques of brains from hereditary cerebral hemorrhage with amyloidosis-Dutch type, Alzheimer disease and nondemented aged subjects. J Neuropathol Exp Neurol 59(8):723–732

    CAS  PubMed  Google Scholar 

  • Yamamoto N, Hirabayashi Y, Amari M, Yamaguchi H, Romanov G, Van Nostrand WE, Yanagisawa K (2005) Assembly of hereditary amyloid β-protein variants in the presence of favorable gangliosides. FEBS Lett 579(10):2185–2190

    CAS  PubMed  Google Scholar 

  • Yamauchi K, Tozuka M, Hidaka H, Nakabayashi T, Sugano M, Katsuyama T (2002) Isoform-specific effect of apolipoprotein E on endocytosis of Aβ-amyloid in cultures of neuroblastoma cells. Ann Clin Lab Sci 32(1):65–74

    CAS  PubMed  Google Scholar 

  • Yan P, Bero AW, Cirrito JR, Xiao Q, Hu X, Wang Y, Gonzales E, Holtzman DM, Lee J-M (2009) Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J Neurosci 29(34):10706–10714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yanagisawa K, Odaka A, Suzuki N, Ihara Y (1995) GM1 ganglioside-bound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer’s disease. Nat Med 1(10):1062–1066

    CAS  PubMed  Google Scholar 

  • Yao Z-X, Papadopoulos V (2002) Function of β-amyloid in cholesterol transport: a lead to neurotoxicity. FASEB J 16:677–679

    Google Scholar 

  • Yip CM, McLaurin J (2001) Amyloid-β peptide assembly: a critical step in fibrillogenesis and membrane disruption. Biophys J 80(3):1359–1371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu X, Zheng J (2012) Cholesterol promotes the interaction of Alzheimer β-amyloid monomer with lipid bilayer. J Mol Biol 421(4–5):561–571

    CAS  PubMed  Google Scholar 

  • Zannis VI, Kardassis D, Zanni EE (1993) Genetic mutations affecting human lipoproteins, their receptors, and their enzymes. Adv Hum Genet 21:145–319

    CAS  PubMed  Google Scholar 

  • Zha Q, Ruan Y, Hartmann T, Beyreuther K, Zhang D (2004) GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol Psychiatry 9(10):946–952

    CAS  PubMed  Google Scholar 

  • Zhang S, Iwata K, Lachenmann MJ, Peng JW, Li S, Stimson ER, Lu Y, Felix AM, Maggio JE, Lee JP (2000) The Alzheimer’s peptide Aβ adopts a collapsed structure in water. J Struct Biol 130:130–141

    CAS  PubMed  Google Scholar 

  • Zhao LN, Long H, Mu Y, Chew LY (2012) The toxicity of amyloid β oligomers. Int J Mol Sci 13(6):7303–7327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong N, Weisgraber KH (2009) Understanding the association of apolipoprotein E4 with Alzheimer disease: clues from its structure. J Biol Chem 284(10):6027–6031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Gursky for her invaluable advice, writing assistance, critical review and proof reading of the chapter. This work was supported, in part, by Marie Curie International Outgoing Fellowship (IOF) 628077 “Structural and Biochemical Basis of Protein Amyloid Evolution” from the European Union to I. M.; M. G. acknowledges support from the BMBF Forschungsinitiative “BioEnergie 2021 - Forschung für die Nutzung von Biomasse” (0315487A-C) and the Cluster of Excellence “Tailor-made Fuels from Biomass” (EXC 236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Morgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morgado, I., Garvey, M. (2015). Lipids in Amyloid-β Processing, Aggregation, and Toxicity. In: Gursky, O. (eds) Lipids in Protein Misfolding. Advances in Experimental Medicine and Biology, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-17344-3_3

Download citation

Publish with us

Policies and ethics