Skip to main content

The Cerebrocerebellar System

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

The cerebellum has massive reciprocal interconnections with the cerebral cortex and with cerebral subcortical structures that complement its interconnections with the spinal cord and brainstem. The major cerebrocerebellar link is mediated by the feedforward/afferent corticopontine projections and mossy fibers emanating from the pontocerebellar projections, and the feedback/efferent cerebellothalamic and thalamocortical projections. These highly arranged connections link sensorimotor, associative and limbic regions of cerebral cortex with the cerebellum and the intervening pontine nuclei and thalamus in a topographically precise manner. The cerebellum also has reciprocal links with the basal ganglia and hypothalamus, and with structures in the limbic circuit. In addition to these mossy fiber afferents to cerebellum, the inferior olive receives indirect input from motor and associative regions of the cerebral cortex by way of the red nucleus and zona incerta, and it conveys these inputs to cerebellum via climbing fibers. The cerebrocerebellar pathways are organized into segregated loops of information processing and stand in contrast to the cerebellar cortical architecture that is essentially uniform. Knowledge of cerebrocerebellar circuits is critical to understanding theories of the cerebellar contribution to motor and nonmotor function, and to the diagnosis and management of patients with lesions in these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aas J-E, Brodal P (1988) Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: an experimental study in the cat. J Comp Neurol 268:313–328

    Article  CAS  PubMed  Google Scholar 

  • Allen GI, Tsukuhara N (1974) Cerebrocerebellar communication systems. Physiol Rev 54:957–1008

    CAS  PubMed  Google Scholar 

  • Anand BK, Malhotra CL, Singh B, Dua S (1959) Cerebellar projections to limbic system. J Neurophysiol 22(4):451–457

    CAS  PubMed  Google Scholar 

  • Batla A, Sánchez MC, Erro R, et al (2015) The role of cerebellum in patients with late onset cervical/segmental dystonia?-evidence from the clinic. Parkinsonism Relat Disord 21(11):1317--1322

    Google Scholar 

  • Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A 107(18):8452–8456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodal P (1978) The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101(2):251–283

    Article  CAS  PubMed  Google Scholar 

  • Brodal P (1979) The pontocerebellar projection in the rhesus monkey: an experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience 4(2):193–208

    Article  CAS  PubMed  Google Scholar 

  • Brodal P, Bjaalie JG (1992) Organization of the pontine nuclei. Neurosci Res 13(2):83–118

    Article  CAS  PubMed  Google Scholar 

  • Brodal P, Walberg F (1977) The pontine projection to the cerebellar anterior lobe. An experimental study in the cat with retrograde transport of horseradish peroxidase. Exp Brain Res 29(2):233–248

    Article  CAS  PubMed  Google Scholar 

  • Cintas HM, Rutherford JG, Gwyn DG (1980) Some midbrain and diencephalic projections to the inferior olive in the rat. In: Courville J, de Montigny C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven Press, New York, pp 73–96

    Google Scholar 

  • Dempsey CW, Tootle DM, Fontana CJ, Fitzjarrell AT, Garey RE, Heath RG (1983) Stimulation of the paleocerebellar cortex of the cat: increased rate of synthesis and release of catecholamines at limbic sites. Biol Psychiatr 18:127–132

    Google Scholar 

  • Dum RP, Li C, Strick PL (2002) Motor and nonmotor domains in the monkey dentate. Ann N Y Acad Sci 978:289–301

    Article  PubMed  Google Scholar 

  • Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89(1):634–639

    Google Scholar 

  • Fisher CM, Cole M (1965) Homolateral ataxia and crural paresis: a vascular syndrome. J Neurol Neurosurg Psychiatry 28:48–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glickstein M, May JG 3rd, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235(3):343–359

    Article  CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E (1984) An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol 229:559–575

    Article  CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E, Mihailoff GA, McDonald EF (1997) The cerebellar-hypothalamic axis: basic circuits and clinical observations. In: Schmahmann JD (ed) The cerebellum and cognition. Academic Press, San Diego. Int Rev Neurobiol:41:83–107

    Google Scholar 

  • Harper JW, Heath RG (1973) Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Exp Neurol 39:285–292

    Article  CAS  PubMed  Google Scholar 

  • Hartmann-von Monakow K, Akert K, Künzle H (1981) Projection of precentral, premotor and prefrontal cortex to the basilar pontine grey and to nucleus reticularis tegmenti pontis in the monkey (Macaca fascicularis). Schweiz Arch Neurol Neurochir Psychiatr 129(2):189–208

    CAS  PubMed  Google Scholar 

  • Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8(11):1491–1493

    Article  CAS  PubMed  Google Scholar 

  • Ilinsky IA, Kultas-Ilinsky K (1987) Sagittal cytoarchitectonic maps of the Macaca mulatta thalamus with a revised nomenclature of the motor-related nuclei validated by observations on their connectivity. J Comp Neurol 262(3):331–364

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2007) The thalamus, 2nd edn. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23(23):8432–8444

    CAS  PubMed  Google Scholar 

  • Marcinkiewicz M, Morcos R, Chretien M (1989) CNS connections with the median raphe nucleus: retrograde tracing with WGA-apoHRP-gold complex in the rat. J Comp Neurol 289:11–35

    Article  CAS  PubMed  Google Scholar 

  • May JG, Andersen RA (1986) Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque. Exp Brain Res 63(2):265–278

    Article  CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266(5184):458–461

    Article  CAS  PubMed  Google Scholar 

  • Nyby O, Jansen J (1951) An experimental investigation of the corticopontine projection in Macaca mulatta. Skrifter utgitt av Det Norske Videnskaps-Akademi: Oslo; 1. Mat Naturv Klasse 3:1–47

    Google Scholar 

  • Pandya DN, Seltzr B, Petrides M, Cipolloni PB (2015) Cerebral cortex: architecture, connections, and the dual origin concept. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ramnani N, Behrens TE, Johansen-Berg H et al (2006) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex 16(6):811–818

    Article  PubMed  Google Scholar 

  • Saint-Cyr JA, Courville J (1980) Projections from the motor cortex, midbrain, and vestibular nuclei to the inferior olive in the cat: anatomical and functional correlates. In: Courville J, de Montigny C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven Press, New York, pp 97–124

    Google Scholar 

  • Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4:174–198

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1989) Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol 289:53–73

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1990) Anatomical investigation of thalamic projections to the posterior parietal cortices in rhesus monkey. J Comp Neurol 295:299–326

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1991) Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol 308:224–248

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1992) Course of the fiber pathways to pons from parasensory association areas in the rhesus monkey. J Comp Neurol 326:159–179

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1993) Prelunate, occipitotemporal, and parahipppocampal projections to the basis pontis in rhesus monkey. J Comp Neurol 337:94–112

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1995) Prefrontal cortex projections to the basilar pons: implications for the cerebellar contribution to higher function. Neurosci Lett 199:175–178

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1997a) The cerebrocerebellar system. In: Schmahmann JD (ed) The cerebellum and cognition. Academic PressSan Diego. Int Rev Neurobiol 41:31–60

    Google Scholar 

  • Schmahmann JD, Pandya DN (1997b) Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17:438–458

    Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Schmahmann JD, MacMore J, Ko R (2004a) The human basis pontis. Clinical syndromes and topographic organization. Brain 127:1269–1291

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Rosene DL, Pandya DN (2004b) Motor projections to the basis pontis in rhesus monkey. J Comp Neurol 478:248–268

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Rosene DL, Pandya DN (2004c) Ataxia after pontine stroke: insights from pontocerebellar fibers in monkey. Ann Neurol 55:585–589

    Article  PubMed  Google Scholar 

  • Shah VS, Schmahmann JD, Pandya DN, Vaher PR (1997) Associative projections to the zona incerta: possible anatomic substrates for extension of the Marr-Albus hypothesis to non-motor learning. Soc Neurosci Abstr 23:1829

    Google Scholar 

  • Snider RS (1952) Interrelations of cerebellum and brainstem. In: Bard P (ed) Patterns of organization of the central nervous system. Res Publ Ass Nerv Ment Dis 30:267–281

    Google Scholar 

  • Snider RS, Maiti A (1976) Cerebellar contribution to the Papez circuit. J Neurosci Res 2:133–146

    Article  CAS  PubMed  Google Scholar 

  • Snider RS, Stowell A (1944) Receiving areas of the tactile, auditory, and visual systems in the cerebellum. J Neurophysiol 7:331–358

    Google Scholar 

  • Thach WT (1978) Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J Neurophysiol 41:654–676

    CAS  PubMed  Google Scholar 

  • Thach WT, Jones EG (1979) The cerebellar dentatothalamic connection: terminal field, lamellae, rods and somatotopy. Brain Res 169(1):168–172

    Article  CAS  PubMed  Google Scholar 

  • van Kan PL, Houk JC, Gibson AR (1993) Output organization of intermediate cerebellum of the monkey. J Neurophysiol 69:57–73

    PubMed  Google Scholar 

  • Vilensky JA, van Hoesen GW (1981) Corticopontine projections from the cingulate cortex in the rhesus monkey. Brain Res 205(2):391–395

    Article  CAS  PubMed  Google Scholar 

  • Voogd J (2004) Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier Academic Press, Amsterdam, pp 321–392

    Chapter  Google Scholar 

  • Wiesendanger R, Wiesendanger M, Rüegg DG (1979) An anatomical investigation of the corticopontaine projection in the primate (Macaca fascicularis and Saimiri sciureus) – II. The projection from frontal and parietal association areas. Neuroscience 4(6):747–765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by the MINDlink, Birmingham, and Sidney R. Baer Jr Foundations, the National Ataxia Foundation and the Ataxia Telangiectasia Children’s Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Schmahmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmahmann, J.D. (2016). The Cerebrocerebellar System. In: Gruol, D., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-24551-5_11

Download citation

Publish with us

Policies and ethics