Skip to main content

Gauge Fields in the Central Nervous System

  • Chapter
  • First Online:

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

Abstract

Recent advances in neuroscience highlight the complexity of the central nervous system (CNS) and call for general, multidisciplinary theoretical approaches. The aim of this chapter is to assess highly organized biological systems, in particular the CNS, via the physical and mathematical procedures of gauge theory – and to provide quantitative methods for experimental assessment. We first describe the nature of a gauge theory in physics, in a language addressed to an interdisciplinary audience. Then we examine the possibility that brain activity is driven by one or more continuous forces, called gauge fields, originating inside or outside the CNS. In particular, we go through the idea of symmetries, which is the cornerstone of gauge theories, and illustrate examples of possible gauge fields in the CNS. A deeper knowledge of gauge theories may lead to novel approaches to (self) organized biological systems, improve our understanding of brain activity and disease, and pave the way to innovative therapeutic interventions.

This is a preview of subscription content, log in via an institution.

References

  • Borsuk M (1933) Drei s¨atze ¨uber die n-dimensionale euklidische sphäre. Fundam Math XX:177–190

    Article  Google Scholar 

  • Buzsáki G, Watson BO (2012) Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci 4:345–367

    Article  Google Scholar 

  • Casanova MF, El-Baz A, Switala A (2011) Laws of conservation as related to brain growth, aging, and evolution: symmetry of the minicolumn. Front Neuroanat 5:66. doi:10.3389/fnana.2011.00066. eCollection 2011

    Article  Google Scholar 

  • Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG (2013) Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 16:838–844. doi:10.1038/nn.3422

    Article  CAS  Google Scholar 

  • Djamanakova A, Tang X, Li X, Faria AV, Ceritoglu C et al (2014) Tools for multiple granularity analysis of brain MRI data for individualized image analysis. NeuroImage. doi:10.1016/j.neuroimage.2014.06.046. pii: S1053–8119(14)00523–0. [Epub ahead of print]

  • Dodson CTJ, Parker PE (1997) A user’s guide to algebraic topology. Kluwer, Dordrecht, xii+405 pp. ISBN: 0–7923–4292-5,MR1430097

    Google Scholar 

  • Ehresmann C (1950) Les connexions infinit’esimales dans un espace fibrée differentiable. Colloque de Topologie, Bruxelles, pp 29–55

    Google Scholar 

  • Esposito U, Giugliano M, van Rossum M, Vasilaki E (2014) Measuring symmetry, asymmetry and randomness in neural network connectivity. PLoS One 9(7):e100805. doi:10.1371/journal.pone.0100805

    Article  Google Scholar 

  • Freeman WJ, Vitiello G (2008) Dissipation and spontaneous symmetry breaking in brain dynamics. J Phys A Math Theor 41(304042):1–17. doi:10.1088/1751-8113/41/30/304042

    Article  Google Scholar 

  • Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138. doi:10.1038/nrn2787

    Article  CAS  Google Scholar 

  • Friston K, Breakspear M, Deco G (2012) Perception and self-organized instability. Front Comput Neurosci 6:44

    Article  Google Scholar 

  • Friston KJ, Kahan J, Razi A, Stephan KE, Sporns O (2014) On nodes and modes in resting state fMRI. NeuroImage. doi:10.1016/j.neuroimage.2014.05.056. pii: S1053–8119(14)00421–2

  • Garfinkel SN, Minati L, Gray MA, Seth AK, Dolan RJ, Critchley HD (2014) Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J Neurosci 34(19):6573–6582. doi:10.1523/JNEUROSCI.3507-13.2014

    Article  CAS  Google Scholar 

  • Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26(17):4535–4545

    Article  CAS  Google Scholar 

  • Higgs PW (1964) Broken symmetries and the masses of Gauge Bosons. Phys Rev Lett 13, 508 – Published 19 October 1964. DOI: http://dx.doi.org/10.1103/PhysRevLett.13.508

  • Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL (2016) Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532(7600):453–458. doi:10.1038/nature17637

    Article  Google Scholar 

  • Ihlen EA (2012) Introduction to multifractal detrended fluctuation analysis in matlab. Front Physiol 141:1–18. doi:10.3389/fphys.2012.00141

    Article  Google Scholar 

  • Koch C, Massimini M, Boly M, Tononi G (2016) Neural correlates of consciousness: progress and problems. Nat Rev Neurosci 17(5):307–321. doi:10.1038/nrn.2016.22

    Article  CAS  Google Scholar 

  • Lewin K (1935) A dynamic theory of personality. McGraw_Hill Book Company, New York

    Google Scholar 

  • Lombardi F, Herrmann HJ, Perrone-Capano C, Plenz D, de Arcangelis L (2012) Balance between excitation and inhibition controls the temporal organization of neuronal avalanches. Phys Rev Lett 108(22):228703. Epub 2012 May 31

    Article  CAS  Google Scholar 

  • Matsui T (2001) Gauge symmetry and neural networks. In: Janke W et al (ed) Fluctuating paths and fields. World Scientific, pp 271–280

    Google Scholar 

  • Mattei TA (2014) Unveiling complexity: non-linear and fractal analysis in neuroscience and cognitive psychology. Front Comput Neurosci 8:17. doi:10.3389/fncom.2014.00017

    Article  Google Scholar 

  • Mosso A (1896) Fear. Longmans, Green and Co, London

    Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system. Springer, Heidelberg

    Book  Google Scholar 

  • Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137(Pt 7):1863–1875. doi:10.1093/brain/awt359. Epub 2014 Feb 14

    Article  Google Scholar 

  • Papo D (2014) Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. Front Syst Neurosci. doi:10.3389/fnsys.2014.00112

  • Park HD, Correia S, Ducorps A, Tallon-Baudry C (2014) Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nat Neurosci. [Epub ahead of print]. doi:10.1038/nn.3671

  • Peters JF (2016) Computational proximity. In: Intelligent Systems Reference Library (ed) Excursions in the topology of digital images. Springer-Verlag, Berlin. doi:10.1007/978-3-319-30262-1

    Chapter  Google Scholar 

  • Peters JF, Tozzi A (2016) Region-Based Borsuk-Ulam Theorem. arXiv.1605.02987

    Google Scholar 

  • Priesemann V (2015) Self-organization to sub-criticality. BMC Neurosci 16(Suppl1):O19. http://www.biomedcentral.com/1471-2202/16/S1/O19

    Article  Google Scholar 

  • Pritchard WS (1992) The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. Int J Neurosci 66:119–129

    Article  CAS  Google Scholar 

  • Sengupta B, Stemmler MB, Friston KJ (2013) Information and efficiency in the nervous system – a synthesis. PLoS Comput Biol 9(7):e1003157. doi:10.1371/journal.pcbi.1003157. Epub 2013 Jul 25

    Article  CAS  Google Scholar 

  • Sengupta B, Tozzi A, Cooray GK, Douglas PK, Friston KJ (2016a) Towards a neuronal gauge theory. PLoS Biol 14(3):e1002400. doi:10.1371/journal.pbio.1002400

    Article  Google Scholar 

  • Sengupta B, Friston KJ, Penny WD (2016b) Gradient-based MCMC samplers for dynamic causal modelling. NeuroImage 125:1107–1118. doi:10.1016/j.neuroimage.2015.07.043. Epub 2015 Jul 23

    Article  CAS  Google Scholar 

  • Snaider J, Franklin S (2014) Vector LIDA. Procedia Comput Sci 41:188–203

    Article  Google Scholar 

  • t’Hooft G (1971) Renormalizable Lagrangians for massive Yang-Mills fields. Nuclear Phys B 35(1):167–188

    Article  Google Scholar 

  • Taylor P, Hobbs JN, Burroni J, Siegelmann HT (2015) The global landscape of cognition: hierarchical aggregation as an organizational principle of human cortical networks and functions. Sci Rep 5:18112. doi:10.1038/srep18112

    Article  CAS  Google Scholar 

  • Tognoli E, Scott Kelso JA (2014) Enlarging the scope: grasping brain complexity. Front Syst Neurosci. doi:10.3389/fnsys.2014.00122

  • Tononi G (2008) Consciousness as integrated information: a provisional manifesto. Biol Bull 215(3):216–242

    Article  Google Scholar 

  • Tozzi A (2015) Information processing in the CNS: a supramolecular chemistry? Cogn Neurodyn 9(5):463–477

    Article  Google Scholar 

  • Tozzi A, Peters JF (2016a) A topological approach unveils system invariances and broken symmetries in the brain. J Neurosci Res 94(5):351–365. doi:10.1002/jnr.23720

    Article  CAS  Google Scholar 

  • Tozzi A, Peters JF (2016b) Towards a fourth spatial dimension of brain activity. Cogn Neurodyn 10(3):189–199. doi:10.1007/s11571-016-9379-z

    Article  Google Scholar 

  • Tozzi A, Tor F, Peters JF (2016) Building a minimum frustration framework for brain functions in long timescales. J Neurosci Res. doi:10.1002/jnr.23748

  • Van Essen DC (2005) A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. NeuroImage 28:635–666

    Article  Google Scholar 

  • Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K (2013) The WU-Minn human connectome project: an overview. NeuroImage 80:62–79. doi:10.1016/j.neuroimage.2013.05.041

  • Whitehead AN (1919) An enquiry concerning the principles of natural knowledge. Cambridge at the University Press

    Google Scholar 

  • Wu X, Foster DJ (2014) Hippocampal replay captures the unique topological structure of a novel environment. J Neurosci 34(19):6459–6469. doi:10.1523/JNEUROSCI.3414-13.2014

    Article  CAS  Google Scholar 

  • Yoon K, Buice MA, Barry C, Hayman R, Burgess N, Fiete IR (2013) Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat Neurosci 16(8):1077–1084. doi:10.1038/nn.3450. Epub 2013 Jul 14

    Article  CAS  Google Scholar 

  • Zeidler E (2011) Quantum field theory III: Gauge Theory. Springer. doi: 10.1007/978-3-642-22421

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Tozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tozzi, A., Sengupta, B., Peters, J.F., Friston, K.J. (2017). Gauge Fields in the Central Nervous System. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_9

Download citation

Publish with us

Policies and ethics