Skip to main content

Peripheral Inflammation and Demyelinating Diseases

  • Chapter
  • First Online:
Glial Cells in Health and Disease of the CNS

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 949))

Abstract

In recent decades, several neurodegenerative diseases have been shown to be exacerbated by systemic inflammatory processes. There is a wide range of literature that demonstrates a clear but complex relationship between the central nervous system (CNS) and the immunological system, both under naïve or pathological conditions. In diseased brains, peripheral inflammation can transform “primed” microglia into an “active” state, which can trigger stronger pathological responses. Demyelinating diseases are a group of neurodegenerative diseases characterized by inflammatory lesions associated with demyelination, which in turn induces axonal damage, neurodegeneration, and progressive loss of function. Among them, the most important are multiple sclerosis (MS) and neuromyelitis optica (NMO). In this review, we will analyze the effect of specific peripheral inflammatory stimuli in the progression of demyelinating diseases and discuss their animal models. In most cases, peripheral immune stimuli are exacerbating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQP4:

Aquaporin-4

BBB:

Blood–brain barrier

CCL2:

Chemokine CC motif ligand 2

CCR2:

Chemokine CC motif receptor 2

CD:

Cluster of differentiation

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CXCR2:

CXC motif chemokine receptor type 2

EAE:

Experimental autoimmune encephalomyelitis

GC:

Glucocorticoids

HPA:

Hypothalamic-Pituitary-Adrenal

HPG:

Hypothalamic-Pituitary-Gonadal

IFN:

Interferons

IgG:

Immunoglobulin G

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

MHC:

Major histocompatibility complex

MS:

Multiple sclerosis

NMO:

Neuromyelitis optica

PMN:

Polymorphonuclear

PPMS:

Primary progressive MS

RRMS:

Relapsing remitting multiple sclerosis

SGK1:

Serum glucocorticoid kinase 1

SPMS:

Secondary progressive multiple sclerosis

TGF-β:

Transforming growth factor beta

Th:

T helper

TLR:

Toll-like receptors

TNF-α:

Tumor necrosis factor α

WBC:

White blood cells

References

  • Almolda B, Gonzalez B, Castellano B (2011) Antigen presentation in EAE: role of microglia, macrophages and dendritic cells. Front Biosci 16:1157–1171 (3781 [pii])

    Article  CAS  Google Scholar 

  • Andersen O, Lygner PE, Bergstrom T, Andersson M, Vahlne A (1993) Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J Neurol 240(7):417–422

    Article  CAS  PubMed  Google Scholar 

  • Arimoto T, Bing G (2003) Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis 12(1):35–45

    Article  CAS  PubMed  Google Scholar 

  • Aubert A, Vega C, Dantzer R, Goodall G (1995) Pyrogens specifically disrupt the acquisition of a task involving cognitive processing in the rat. Brain Behav Immun 9(2):129–148. doi:10.1006/brbi.1995.1013 (S0889-1591(85)71013-6 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Bakshi P, Margenthaler E, Reed J, Crawford F, Mullan M (2011) Depletion of CXCR2 inhibits gamma-secretase activity and amyloid-beta production in a murine model of Alzheimer’s disease. Cytokine 53(2):163–169 (10.1016/j.cyto.2010.10.008S1043-4666(10)00703-9 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Banisadr G, Rostene W, Kitabgi P, Parsadaniantz SM (2005) Chemokines and brain functions. Curr Drug Targets Inflamm Allergy 4(3):387–399

    Article  CAS  PubMed  Google Scholar 

  • Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55(4):458–468

    Article  PubMed  Google Scholar 

  • Batocchi AP, Rotondi M, Caggiula M, Frisullo G, Odoardi F, Nociti V, Carella C, Tonali PA, Mirabella M (2003) Leptin as a marker of multiple sclerosis activity in patients treated with interferon-beta. J Neuroimmunol 139(1–2):150–154 (S0165572803001541 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H (1987) Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238(4826):524–526

    Article  CAS  PubMed  Google Scholar 

  • Besedovsky HO, del Rey A (1996) Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 17(1):64–102

    Article  CAS  PubMed  Google Scholar 

  • Blakemore WF (2008) Regeneration and repair in multiple sclerosis: the view of experimental pathology. J Neurol Sci 265(1–2):1–4

    Article  CAS  PubMed  Google Scholar 

  • Blakemore WF, Franklin RJ (2008) Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol 318:193–212

    CAS  PubMed  Google Scholar 

  • Bradl M, Lassmann H (2009) Progressive multiple sclerosis. Semin Immunopathol 31(4):455–465. doi:10.1007/s00281-009-0182-3

    Article  CAS  PubMed  Google Scholar 

  • Bradl M, Lassmann H (2014) Experimental models of neuromyelitis optica. Brain Pathol 24(1):74–82. doi:10.1111/bpa.12098

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535 (10.1126/science.1092385303/5663/1532 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Brocke S, Gaur A, Piercy C, Gautam A, Gijbels K, Fathman CG, Steinman L (1993) Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 365(6447):642–644. doi:10.1038/365642a0

    Article  CAS  PubMed  Google Scholar 

  • Buenafe AC, Bourdette DN (2007) Lipopolysaccharide pretreatment modulates the disease course in experimental autoimmune encephalomyelitis. J Neuroimmunol 182(1–2):32–40. doi:10.1016/j.jneuroim.2006.09.004 (S0165-5728(06)00371-7 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Buljevac D, Flach HZ, Hop WC, Hijdra D, Laman JD, Savelkoul HF, van Der Meche FG, van Doorn PA, Hintzen RQ (2002) Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125(Pt 5):952–960

    Article  CAS  PubMed  Google Scholar 

  • Byravan S, Foster LM, Phan T, Verity AN, Campagnoni AT (1994) Murine oligodendroglial cells express nerve growth factor. Proc Natl Acad Sci USA 91(19):8812–8816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell SJ, Anthony DC, Oakley F, Carlsen H, Elsharkawy AM, Blomhoff R, Mann DA (2008) Hepatic nuclear factor kappa B regulates neutrophil recruitment to the injured brain. J Neuropathol Exp Neurol 67(3):223–230 (10.1097/NEN.0b013e318165495700005072-200803000-00005 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Campbell SJ, Meier U, Mardiguian S, Jiang Y, Littleton ET, Bristow A, Relton J, Connor TJ, Anthony DC (2010) Sickness behaviour is induced by a peripheral CXC-chemokine also expressed in multiple sclerosis and EAE. Brain Behav Immun 24(5):738–746 (S0889-1591(10)00038-3 [pii] 10.1016/j.bbi.2010.01.011)

    Article  CAS  PubMed  Google Scholar 

  • Cardona AE, Li M, Liu L, Savarin C, Ransohoff RM (2008) Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. J Leukoc Biol 84(3):587–594 (10.1189/jlb.1107763jlb.1107763 [pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson T, Kroenke M, Rao P, Lane TE, Segal B (2008) The Th17-ELR + CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 205(4):811–823 (jem.20072404 [pii] 10.1084/jem.20072404)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combrinck MI, Perry VH, Cunningham C (2002) Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 112(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Correale J, Farez MF (2011a) The impact of environmental infections (parasites) on MS activity. Mult Scler 17(10):1162–1169 (17/10/1162 [pii] 10.1177/1352458511418027)

    Article  CAS  PubMed  Google Scholar 

  • Correale J, Farez MF (2011b) The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol 233(1–2):6–11 (S0165-5728(11)00005-1 [pii] 10.1016/j.jneuroim.2011.01.002)

    Article  CAS  PubMed  Google Scholar 

  • Crisi GM, Santambrogio L, Hochwald GM, Smith SR, Carlino JA, Thorbecke GJ (1995) Staphylococcal enterotoxin B and tumor-necrosis factor-alpha-induced relapses of experimental allergic encephalomyelitis: protection by transforming growth factor-beta and interleukin-10. Eur J Immunol 25(11):3035–3040. doi:10.1002/eji.1830251108

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C, Wilcockson DC, Boche D, Perry VH (2005a) Comparison of inflammatory and acute-phase responses in the brain and peripheral organs of the ME7 model of prion disease. J Virol 79(8):5174–5184 (79/8/5174 [pii] 10.1128/JVI.79.8.5174-5184.2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005b) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25(40):9275–9284

    Article  CAS  PubMed  Google Scholar 

  • Czlonkowska A, Kurkowska-Jastrzebska I, Czlonkowski A, Peter D, Stefano GB (2002) Immune processes in the pathogenesis of Parkinson’s disease—a potential role for microglia and nitric oxide. Med Sci Monit 8(8):165–177

    Google Scholar 

  • Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346(3):165–173 (10.1056/NEJMoa010994346/3/165 [pii])

    Article  PubMed  Google Scholar 

  • D’Mello C, Le T, Swain MG (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 29(7):2089–2102 (29/7/2089 [pii] 10.1523/JNEUROSCI.3567-08.2009)

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Lercher LD, Clinton PM, Du Y, Livingston DL, Vieira C, Yang L, Shen MM, Dreyfus CF (2003) The trophic role of oligodendrocytes in the basal forebrain. J Neurosci 23(13):5846–5853 (23/13/5846 [pii])

    CAS  PubMed  Google Scholar 

  • Dantzer R, Bluthe RM, Laye S, Bret-Dibat JL, Parnet P, Kelley KW (1998) Cytokines and sickness behavior. Ann N Y Acad Sci 840:586–590

    Article  CAS  PubMed  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56 (nrn2297 [pii] 10.1038/nrn2297)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Rosa V, Procaccini C, La Cava A, Chieffi P, Nicoletti GF, Fontana S, Zappacosta S, Matarese G (2006) Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest 116(2):447–455. doi:10.1172/JCI26523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denic A, Johnson AJ, Bieber AJ, Warrington AE, Rodriguez M, Pirko I (2011) The relevance of animal models in multiple sclerosis research. Pathophysiology 18(1):21–29 (S0928-4680(10)00022-2 [pii] 10.1016/j.pathophys.2010.04.004)

    Article  CAS  PubMed  Google Scholar 

  • Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84(4):932–939 (jlb.0208108 [pii] 10.1189/jlb.0208108)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du C, Yao SY, Ljunggren-Rose A, Sriram S (2002) Chlamydia pneumoniae infection of the central nervous system worsens experimental allergic encephalitis. J Exp Med 196(12):1639–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68(6):647–654. doi:10.1002/jnr.10245

    Article  CAS  PubMed  Google Scholar 

  • Dunn SE, Gunde E, Lee H (2015a) Sex-based differences in multiple sclerosis (MS): part II: rising incidence of multiple sclerosis in women and the vulnerability of men to progression of this disease. Curr Top Behav Neurosci. doi:10.1007/7854_2015_370

    Google Scholar 

  • Dunn SE, Lee H, Pavri FR, Zhang MA (2015b) Sex-based differences in multiple sclerosis (part I): biology of disease incidence. Curr Top Behav Neurosci. doi:10.1007/7854_2015_371

    Google Scholar 

  • Edwards LJ, Sharrack B, Ismail A, Tumani H, Constantinescu CS (2011) Central inflammation versus peripheral regulation in multiple sclerosis. J Neurol 258(8):1518–1527. doi:10.1007/s00415-011-5973-5

    Article  CAS  PubMed  Google Scholar 

  • Ferrari CC, Depino AM, Prada F, Muraro N, Campbell S, Podhajcer O, Perry VH, Anthony DC, Pitossi FJ (2004) Reversible demyelination, blood-brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic il-1 expression in the brain. Am J Pathol 165(5):1827–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari CC, Tarelli R (2011) Parkinson’s disease and systemic inflammation. Parkinsons Dis 2011:436813. doi:10.4061/2011/436813

    PubMed  PubMed Central  Google Scholar 

  • Frank MG, Miguel ZD, Watkins LR, Maier SF (2010) Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun 24(1):19–30 (S0889-1591(09)00386-9 [pii] 10.1016/j.bbi.2009.07.008)

    Article  CAS  PubMed  Google Scholar 

  • Fung A, Vizcaychipi M, Lloyd D, Wan Y, Ma D (2012) Central nervous system inflammation in disease related conditions: mechanistic prospects. Brain Res 1446:144–155 (10.1016/j.brainres.2012.01.061S0006-8993(12)00164-3 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Galiano M, Liu ZQ, Kalla R, Bohatschek M, Koppius A, Gschwendtner A, Xu S, Werner A, Kloss CU, Jones LL, Bluethmann H, Raivich G (2001) Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci 14(2):327–341 (ejn1647 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Tsirka SE (2011) Animal Models of MS Reveal Multiple Roles of Microglia in Disease Pathogenesis. Neurol Res Int 2011:383087. doi:10.1155/2011/383087

    Article  PubMed  PubMed Central  Google Scholar 

  • Gautron L, Laye S (2009) Neurobiology of inflammation-associated anorexia. Front Neurosci 3:59. doi:10.3389/neuro.23.003.2009

    PubMed  Google Scholar 

  • Glabinski AR, Tani M, Strieter RM, Tuohy VK, Ransohoff RM (1997) Synchronous synthesis of alpha- and beta-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am J Pathol 150(2):617–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 19(10):1329–1331 (05-3776fje [pii] 10.1096/fj.05-3776fje)

    CAS  PubMed  Google Scholar 

  • Golde TE, Streit WJ, Chakrabarty P (2013) Alzheimer’s disease risk alleles in TREM2 illuminate innate immunity in Alzheimer’s disease. Alzheimers Res Ther 5(3):24 (alzrt178 [pii] 10.1186/alzrt178)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoriadis N, Hadjigeorgiou GM (2006) Virus-mediated autoimmunity in Multiple Sclerosis. J Autoimmune Dis 3:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A (2009) IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119(1):61–69 (10.1172/JCI3599735997 [pii])

    CAS  PubMed  Google Scholar 

  • Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92(9):3007–3017

    CAS  PubMed  Google Scholar 

  • Hauser SL, Doolittle TH, Lincoln R, Brown RH, Dinarello CA (1990) Cytokine accumulations in CSF of multiple sclerosis patients: frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology 40(11):1735–1739

    Article  CAS  PubMed  Google Scholar 

  • Hauser SL, Weiner HL, Che M, Shapiro ME, Gilles F, Letvin NL (1984) Prevention of experimental allergic encephalomyelitis (EAE) in the SJL/J mouse by whole body ultraviolet irradiation. J Immunol 132(3):1276–1281

    CAS  PubMed  Google Scholar 

  • Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23(3):309–317 (S0889-1591(08)00348-6 [pii] 10.1016/j.bbi.2008.09.002)

    Article  CAS  PubMed  Google Scholar 

  • Herrmann I, Kellert M, Schmidt H, Mildner A, Hanisch UK, Bruck W, Prinz M, Nau R (2006) Streptococcus pneumoniae Infection aggravates experimental autoimmune encephalomyelitis via Toll-like receptor 2. Infect Immun 74(8):4841–4848 (74/8/4841 [pii] 10.1128/IAI.00026-06)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofstetter HH, Ibrahim SM, Koczan D, Kruse N, Weishaupt A, Toyka KV, Gold R (2005) Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol 237(2):123–130 (S0008-8749(05)00242-X [pii] 10.1016/j.cellimm.2005.11.002)

    Article  CAS  PubMed  Google Scholar 

  • Huitinga I, Schmidt ED, van der Cammen MJ, Binnekade R, Tilders FJ (2000) Priming with interleukin-1beta suppresses experimental allergic encephalomyelitis in the Lewis rat. J Neuroendocrinol 12(12):1186–1193 574 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Janik JE, Curti BD, Considine RV, Rager HC, Powers GC, Alvord WG, Smith JW 2nd, Gause BL, Kopp WC (1997) Interleukin 1 alpha increases serum leptin concentrations in humans. J Clin Endocrinol Metab 82(9):3084–3086

    CAS  PubMed  Google Scholar 

  • Kim SH, Kim W, Li XF, Jung IJ, Kim HJ (2011) Repeated treatment with rituximab based on the assessment of peripheral circulating memory B cells in patients with relapsing neuromyelitis optica over 2 years. Arch Neurol 68(11):1412–1420 (10.1001/archneurol.2011.154archneurol.2011.154 [pii])

    Article  PubMed  Google Scholar 

  • Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81(3):302–313

    Article  CAS  PubMed  Google Scholar 

  • Konsman JP, Kelley K, Dantzer R (1999) Temporal and spatial relationships between lipopolysaccharide-induced expression of Fos, interleukin-1beta and inducible nitric oxide synthase in rat brain. Neuroscience 89(2):535–548 (S0306-4522(98)00368-6 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Kossmann T, Hans VH, Imhof HG, Stocker R, Grob P, Trentz O, Morganti-Kossmann C (1995) Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4(5):311–317

    Article  CAS  PubMed  Google Scholar 

  • Krady JK, Lin HW, Liberto CM, Basu A, Kremlev SG, Levison SW (2008) Ciliary neurotrophic factor and interleukin-6 differentially activate microglia. J Neurosci Res 86(7):1538–1547. doi:10.1002/jnr.21620

    Article  CAS  PubMed  Google Scholar 

  • Krieger M, Brunner T, Bischoff SC, von Tscharner V, Walz A, Moser B, Baggiolini M, Dahinden CA (1992) Activation of human basophils through the IL-8 receptor. J Immunol 149(8):2662–2667

    CAS  PubMed  Google Scholar 

  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712 (awh641 [pii] 10.1093/brain/awh641)

    Article  PubMed  Google Scholar 

  • Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374 (10.1038/ng1095ng1095 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 585(23):3770–3780 (S0014-5793(11)00336-X [pii] 10.1016/j.febslet.2011.04.066)

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Schwab C, McGeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59(1):152–165. doi:10.1002/glia.21087

    Article  PubMed  Google Scholar 

  • Lindquist S, Hassinger S, Lindquist JA, Sailer M (2011) The balance of pro-inflammatory and trophic factors in multiple sclerosis patients: effects of acute relapse and immunomodulatory treatment. Mult Scler 17(7):851–866 (1352458511399797 [pii] 10.1177/1352458511399797)

    Article  PubMed  CAS  Google Scholar 

  • Ling PR, Schwartz JH, Bistrian BR (1997) Mechanisms of host wasting induced by administration of cytokines in rats. Am J Physiol 272(3 Pt 1):E333–E339

    CAS  PubMed  Google Scholar 

  • Linington C, Engelhardt B, Kapocs G, Lassman H (1992) Induction of persistently demyelinated lesions in the rat following the repeated adoptive transfer of encephalitogenic T cells and demyelinating antibody. J Neuroimmunol 40(2–3):219–224

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Belkadi A, Darnall L, Hu T, Drescher C, Cotleur AC, Padovani-Claudio D, He T, Choi K, Lane TE, Miller RH, Ransohoff RM (2010) CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nat Neurosci 13(3):319–326 (nn.2491 [pii] 10.1038/nn.2491)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loddick S, Rothwell N (2002) Cytokines and neurodegeneration. In: Loddick S, Rothwell N (eds) Immune an inflammatory responses in the nervous system. Oxford University Press, Oxford, pp 90–105

    Chapter  Google Scholar 

  • London A, Cohen M, Schwartz M (2013) Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 7:34. doi:10.3389/fncel.2013.00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Londono D, Cadavid D (2010) Bacterial lipoproteins can disseminate from the periphery to inflame the brain. Am J Pathol 176(6):2848–2857 (ajpath.2010.091235 [pii] 10.2353/ajpath.2010.091235)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matarese G, Di Giacomo A, Sanna V, Lord GM, Howard JK, Di Tuoro A, Bloom SR, Lechler RI, Zappacosta S, Fontana S (2001) Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol 166(10):5909–5916

    Article  CAS  PubMed  Google Scholar 

  • Matarese G, Procaccini C, De Rosa V (2008) The intricate interface between immune and metabolic regulation: a role for leptin in the pathogenesis of multiple sclerosis? J Leukoc Biol 84(4):893–899 (jlb.0108022 [pii] 10.1189/jlb.0108022)

    Article  CAS  PubMed  Google Scholar 

  • McColl BW, Rothwell NJ, Allan SM (2007) Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 27(16):4403–4412

    Article  CAS  PubMed  Google Scholar 

  • McQuaid S, Cunnea P, McMahon J, Fitzgerald U (2009) The effects of blood-brain barrier disruption on glial cell function in multiple sclerosis. Biochem Soc Trans 37(Pt 1):329–331

    Article  CAS  PubMed  Google Scholar 

  • Minghetti L, Polazzi E, Nicolini A, Greco A, Levi G (1999) Possible role of microglial prostanoids and free radicals in neuroprotection and neurodegeneration. Adv Exp Med Biol 468:109–119

    Article  CAS  PubMed  Google Scholar 

  • Moreno B, Jukes JP, Vergara-Irigaray N, Errea O, Villoslada P, Perry VH, Newman TA (2011) Systemic inflammation induces axon injury during brain inflammation. Ann Neurol 70(6):932–942. doi:10.1002/ana.22550

    Article  CAS  PubMed  Google Scholar 

  • Mosher B, Dean R, Harkema J, Remick D, Palma J, Crockett E (2001) Inhibition of Kupffer cells reduced CXC chemokine production and liver injury. J Surg Res 99(2):201–210 (10.1006/jsre.2001.6217S0022-4804(01)96217-1 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Moynagh PN (2005) The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J Anat 207(3):265–269 (JOA445 [pii] 10.1111/j.1469-7580.2005.00445.x)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JB, Sturm E (1923) Conditions Determining the Transplantability of Tissues in the Brain. J Exp Med 38(2):183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murta V, Farias MI, Pitossi FJ, Ferrari CC (2015) Chronic systemic IL-1beta exacerbates central neuroinflammation independently of the blood-brain barrier integrity. J Neuroimmunol 278:30–43 (10.1016/j.jneuroim.2014.11.023S0165-5728(14)00984-9 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Murta V, Ferrari CC (2013) Influence of Peripheral inflammation on the progression of multiple sclerosis: evidence from the clinic and experimental animal models. Mol Cell Neurosci 53:6–13 (10.1016/j.mcn.2012.06.004S1044-7431(12)00108-X [pii])

    Article  CAS  PubMed  Google Scholar 

  • Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182 nri1785 [pii] 10.1038/nri1785

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 95(10):5779–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng RL, Scott NM, Strickland DH, Gorman S, Grimbaldeston MA, Norval M, Waithman J, Hart PH (2013) Altered immunity and dendritic cell activity in the periphery of mice after long-term engraftment with bone marrow from ultraviolet-irradiated mice. J Immunol 190(11):5471–5484 (10.4049/jimmunol.1202786jimmunol.1202786 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Nicot A (2009) Gender and sex hormones in multiple sclerosis pathology and therapy. Front Biosci (Landmark Ed) 14:4477–4515 (3543 [pii])

    Article  CAS  Google Scholar 

  • Nishiyori A, Minami M, Takami S, Satoh M (1997) Type 2 interleukin-1 receptor mRNA is induced by kainic acid in the rat brain. Brain Res Mol Brain Res 50(1–2):237–245

    Article  CAS  PubMed  Google Scholar 

  • Nogai A, Siffrin V, Bonhagen K, Pfueller CF, Hohnstein T, Volkmer-Engert R, Bruck W, Stadelmann C, Kamradt T (2005) Lipopolysaccharide injection induces relapses of experimental autoimmune encephalomyelitis in nontransgenic mice via bystander activation of autoreactive CD4 + cells. J Immunol 175(2):959–966 (175/2/959 [pii])

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JC, Satpathy A, Hartman ME, Horvath EM, Kelley KW, Dantzer R, Johnson RW, Freund GG (2005) IL-1beta-mediated innate immunity is amplified in the db/db mouse model of type 2 diabetes. J Immunol 174(8):4991–4997 (174/8/4991 [pii])

    Article  PubMed  Google Scholar 

  • Oh JW, Van Wagoner NJ, Rose-John S, Benveniste EN (1998) Role of IL-6 and the soluble IL-6 receptor in inhibition of VCAM-1 gene expression. J Immunol 161(9):4992–4999

    CAS  PubMed  Google Scholar 

  • Oka Y, Ibuki T, Matsumura K, Namba M, Yamazaki Y, Poole S, Tanaka Y, Kobayashi S (2007) Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience 145(2):530–538 (S0306-4522(06)01470-9 [pii] 10.1016/j.neuroscience.2006.10.055)

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12(7):829–834 (nm1425 [pii] 10.1038/nm1425)

    Article  CAS  PubMed  Google Scholar 

  • Ott L, McClain CJ, Gillespie M, Young B (1994) Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma 11(5):447–472

    Article  CAS  PubMed  Google Scholar 

  • Ottani A, Giuliani D, Mioni C, Galantucci M, Minutoli L, Bitto A, Altavilla D, Zaffe D, Botticelli AR, Squadrito F, Guarini S (2009) Vagus nerve mediates the protective effects of melanocortins against cerebral and systemic damage after ischemic stroke. J Cereb Blood Flow Metab 29(3):512–523 (10.1038/jcbfm.2008.140jcbfm2008140 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Palin K, Cunningham C, Forse P, Perry VH, Platt N (2008) Systemic inflammation switches the inflammatory cytokine profile in CNS Wallerian degeneration. Neurobiol Dis 30(1):19–29 (S0969-9961(07)00267-7 [pii] 10.1016/j.nbd.2007.11.012)

    Article  CAS  PubMed  Google Scholar 

  • Panitch HS (1994) Influence of infection on exacerbations of multiple sclerosis. Ann Neurol 36(Suppl):S25–S28

    Article  PubMed  Google Scholar 

  • Perry V, Cunningham C, Boche D (2002) Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15:349–354

    Article  PubMed  Google Scholar 

  • Perry VH, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4(2):103–112

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. doi:10.1007/s00281-013-0382-8

    PubMed  PubMed Central  Google Scholar 

  • Piccinni MP, Giudizi MG, Biagiotti R, Beloni L, Giannarini L, Sampognaro S, Parronchi P, Manetti R, Annunziato F, Livi C et al (1995) Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol 155(1):128–133

    CAS  PubMed  Google Scholar 

  • Pitossi F, del Rey A, Kabiersch A, Besedovsky H (1997) Induction of cytokine transcripts in the central nervous system and pituitary following peripheral administration of endotoxin to mice. J Neurosci Res 48(4):287–298

    Article  CAS  PubMed  Google Scholar 

  • Playfair JHL, Chain BM (1979) Immunology at a glance. Blackwell Science Publishing, London

    Google Scholar 

  • Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30(10):527–535 (S0166-2236(07)00211-1 [pii] 10.1016/j.tins.2007.07.007)

    Article  CAS  PubMed  Google Scholar 

  • Procaccini C, Pucino V, De Rosa V, Marone G, Matarese G (2014) Neuro-endocrine networks controlling immune system in health and disease. Front Immunol 5:143 (10.3389/fimmu.2014.00143)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian J, Zhu L, Li Q, Belevych N, Chen Q, Zhao F, Herness S, Quan N (2012) Interleukin-1R3 mediates interleukin-1-induced potassium current increase through fast activation of Akt kinase. Proc Natl Acad Sci USA 109(30):12189–12194 (10.1073/pnas.12052071091205207109 [pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan C, Yu H, Qiao J, Xiao B, Zhao G, Wu Z, Li Z, Lu C (2013) Impaired regulatory function and enhanced intrathecal activation of B cells in neuromyelitis optica: distinct from multiple sclerosis. Mult Scler 19(3):289–298 (10.1177/13524585124547711352458512454771 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Liu L, Cardona AE (2007) Chemokines and chemokine receptors: multipurpose players in neuroinflammation. Int Rev Neurobiol 82:187–204 (S0074-7742(07)82010-1 [pii] 10.1016/S0074-7742(07)82010-1)

    Article  CAS  PubMed  Google Scholar 

  • Rivest S, Lacroix S, Vallieres L, Nadeau S, Zhang J, Laflamme N (2000) How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 223(1):22–38 (pse22304 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Romeo HE, Tio DL, Rahman SU, Chiappelli F, Taylor AN (2001) The glossopharyngeal nerve as a novel pathway in immune-to-brain communication: relevance to neuroimmune surveillance of the oral cavity. J Neuroimmunol 115(1–2):91–100 (S0165572801002703 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410(6827):471–475 (10.1038/3506856635068566 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Schafer KH, Mestres P, Marz P, Rose-John S (1999) The IL-6/sIL-6R fusion protein hyper-IL-6 promotes neurite outgrowth and neuron survival in cultured enteric neurons. J Interferon Cytokine Res 19(5):527–532. doi:10.1089/107999099313974

    Article  CAS  PubMed  Google Scholar 

  • Schiffenbauer J, Johnson HM, Butfiloski EJ, Wegrzyn L, Soos JM (1993) Staphylococcal enterotoxins can reactivate experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 90(18):8543–8546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz T, Chew LJ (2008) Cytokines and myelination in the central nervous system. Sci World J 8:1119–1147. doi:10.1100/tsw.2008.140

    Article  CAS  Google Scholar 

  • Semple BD, Bye N, Ziebell JM, Morganti-Kossmann MC (2010) Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis 40(2):394–403 (10.1016/j.nbd.2010.06.015S0969-9961(10)00211-1 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Seo JH, Miyamoto N, Hayakawa K, Pham LD, Maki T, Ayata C, Kim KW, Lo EH, Arai K (2013) Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. J Clin Invest 123(2):782–786 (10.1172/JCI6586365863 [pii])

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serres S, Anthony DC, Jiang Y, Broom KA, Campbell SJ, Tyler DJ, van Kasteren SI, Davis BG, Sibson NR (2009) Systemic inflammatory response reactivates immune-mediated lesions in rat brain. J Neurosci 29(15):4820–4828 (29/15/4820 [pii] 10.1523/JNEUROSCI.0406-09.2009)

    Article  CAS  PubMed  Google Scholar 

  • Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD, Carter DB, Chin JE (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 56(6):581–588 (S0361923001007304 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Sorrells SF, Sapolsky RM (2010) Glucocorticoids can arm macrophages for innate immune battle. Brain Behav Immun 24(1):17–18 (S0889-1591(09)00468-1 [pii] 10.1016/j.bbi.2009.10.004)

    Article  PubMed  Google Scholar 

  • Takii T, Akahoshi T, Kato K, Hayashi H, Marunouchi T, Onozaki K (1992) Interleukin-1 up-regulates transcription of its own receptor in a human fibroblast cell line TIG-1: role of endogenous PGE2 and cAMP. Eur J Immunol 22(5):1221–1227. doi:10.1002/eji.1830220517

    Article  CAS  PubMed  Google Scholar 

  • Takii T, Hayashi H, Marunouchi T, Onozaki K (1994) Interleukin-1 down-regulates type I interleukin 1 receptor mRNA expression in a human fibroblast cell line TIG-1 in the absence of prostaglandin E2 synthesis. Lymphokine Cytokine Res 13(3):213–219

    CAS  PubMed  Google Scholar 

  • Tauber SC, Nau R, Gerber J (2007) Systemic infections in multiple sclerosis and experimental autoimmune encephalomyelitis. Arch Physiol Biochem 113(3):124–130 (782870844 [pii] 10.1080/13813450701531227)

    Article  CAS  PubMed  Google Scholar 

  • Teeling JL, Perry VH (2009) Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 158(3):1062–1073 (S0306-4522(08)01045-2 [pii] 10.1016/j.neuroscience.2008.07.031)

    Article  CAS  PubMed  Google Scholar 

  • Trenova AG, Manova MG, Kostadinova II, Murdjeva MA, Hristova DR, Vasileva TV, Zahariev ZI (2011) Clinical and laboratory study of pro-inflammatory and antiinflammatory cytokines in women with multiple sclerosis. Folia Med (Plovdiv) 53(2):29–35

    Google Scholar 

  • Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, Ransohoff RM, Miller RH (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110(3):373–383 (S0092867402008383 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Fujinami RS (2002) Inside-Out versus Outside-In models for virus induced demyelination: axonal damage triggering demyelination. Springer Semin Immunopathol 24(2):105–125. doi:10.1007/s00281-002-0105-z

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Kuang LQ, Libbey JE, Fujinami RS (2003) Axonal injury heralds virus-induced demyelination. Am J Pathol 162(4):1259–1269 (S0002-9440(10)63922-3 [pii] 10.1016/S0002-9440(10)63922-3)

    Article  PubMed  PubMed Central  Google Scholar 

  • Uzawa A, Mori M, Sato Y, Hayakawa S, Masuda S, Taniguchi J, Kuwabara S (2010) Cytokine and chemokines profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler 16(12):1443–52. doi:10.1177/1352458510379247

    Google Scholar 

  • van Riemsdijk IC, Baan CC, Loonen EH, Knoop CJ, Navarro Betonico G, Niesters HG, Zietse R, Weimar W (2001) T cells activate the tumor necrosis factor-alpha system during hemodialysis, resulting in tachyphylaxis. Kidney Int 59(3):883–892 (kid571 [pii] 10.1046/j.1523-1755.2001.059003883.x)

    Article  PubMed  Google Scholar 

  • Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, Thal DR, Charo IF, Heppner FL, Aguzzi A, Garaschuk O, Ransohoff RM, Jucker M (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci USA 109(44):18150–18155 (10.1073/pnas.12101501091210150109 [pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veenstra M, Ransohoff RM (2012) Chemokine receptor CXCR2: physiology regulator and neuroinflammation controller? J Neuroimmunol 246(1–2):1–9 (10.1016/j.jneuroim.2012.02.016S0165-5728(12)00064-1 [pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitkovic L, Konsman JP, Bockaert J, Dantzer R, Homburger V, Jacque C (2000) Cytokine signals propagate through the brain. Mol Psychiatry 5(6):604–615

    Article  CAS  PubMed  Google Scholar 

  • Wagner JA (1996) Is IL-6 both a cytokine and a neurotrophic factor? J Exp Med 183(6):2417–2419

    Article  CAS  PubMed  Google Scholar 

  • Waxman SG (1998) Demyelinating diseases–new pathological insights, new therapeutic targets. N Engl J Med 338(5):323–325. doi:10.1056/NEJM199801293380610

    CAS  PubMed  Google Scholar 

  • Wilkins A, Chandran S, Compston A (2001) A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 36(1):48–57 (10.1002/glia.1094 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Wilson EH, Weninger W, Hunter CA (2010) Trafficking of immune cells in the central nervous system. J Clin Invest 120(5):1368–1379 (10.1172/JCI4191141911 [pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18(2):601–609

    CAS  PubMed  Google Scholar 

  • Xia M, Hyman BT (2002) GROalpha/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways and for tau hyperphosphorylation-a role in Alzheimer’s disease? J Neuroimmunol 122(1–2):55–64 (S0165572801004635 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Ysrraelit MC, Gaitan MI, Lopez AS, Correale J (2008) Impaired hypothalamic-pituitary-adrenal axis activity in patients with multiple sclerosis. Neurology 71(24):1948–1954 (10.1212/01.wnl.0000336918.32695.6b 71/24/1948 [pii])

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Carina C. Ferrari and Verónica Murta are members of the Research Career of the National Council of Scientific and Technological Research (CONICET), Argentina. CF is supported by CONICET (PIP 2012-2014, 11220110100560) and National Agency of Science and Technology of Argentina (ANPCyT) (PICT 2012-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Murta, V., Ferrari, C. (2016). Peripheral Inflammation and Demyelinating Diseases. In: von Bernhardi, R. (eds) Glial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-319-40764-7_13

Download citation

Publish with us

Policies and ethics