Skip to main content

Inflammasome Activation Can Mediate Tissue-Specific Pathogenesis or Protection in Staphylococcus aureus Infection

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 397))

Abstract

Staphylococcus aureus is a Gram-positive coccus that interacts with human hosts on a spectrum from quiet commensal to deadly pathogen. S. aureus is capable of infecting nearly every tissue in the body resulting in cellulitis, pneumonia, osteomyelitis, endocarditis, brain abscesses, bacteremia, and more. S. aureus has a wide range of factors that promote infection, and each site of infection triggers a different response in the human host. In particular, the different patterns of inflammasome activation mediate tissue-specific pathogenesis or protection in S. aureus infection. Although still a nascent field, understanding the unique host–pathogen interactions in each infection and the role of inflammasomes in mediating pathogenesis may lead to novel strategies for treating S. aureus infections. Reviews addressing S. aureus virulence and pathogenesis (Thammavongsa et al. 2015), as well as epidemiology and pathophysiology (Tong et al. 2015), have recently been published. This review will focus on S. aureus factors that activate inflammasomes and their impact on innate immune signaling and bacterial survival.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari RP, Ajao AO, Aman MJ, Karauzum H, Sarwar J, Lydecker AD, Johnson JK, Nguyen C, Chen WH, Roghmann MC (2012) Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive S. aureus infections. J Infect Dis 206(6):915–923. doi:10.1093/infdis/jis462

    Article  CAS  PubMed  Google Scholar 

  • Alonzo F III, Kozhaya L, Rawlings SA, Reyes-Robles T, DuMont AL, Myszka DG, Landau NR, Unutmaz D, Torres VJ (2013) CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493(7430):51–55. doi:10.1038/nature11724

    Article  PubMed  Google Scholar 

  • Badarau A, Rouha H, Malafa S, Logan DT, Hakansson M, Stulik L, Dolezilkova I, Teubenbacher A, Gross K, Maierhofer B, Weber S, Jagerhofer M, Hoffman D, Nagy E (2015) Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH. J Biol Chem 290(1):142–156. doi:10.1074/jbc.M114.598110

    Article  CAS  PubMed  Google Scholar 

  • Borregaard N (2010) Neutrophils, from marrow to microbes. Immunity 33(5):657–670. doi:10.1016/j.immuni.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  • Brown EL, Dumitrescu O, Thomas D, Badiou C, Koers EM, Choudhury P, Vazquez V, Etienne J, Lina G, Vandenesch F, Bowden MG (2009) The Panton-Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. Clin Microbiol Infect: Official Publ Eur Soc Clin Microbiol Infect Dis 15(2):156–164. doi:10.1111/j.1469-0691.2008.02648.x

    Article  CAS  Google Scholar 

  • Bubeck Wardenburg J, Schneewind O (2008) Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med 205(2):287–294. doi:10.1084/jem.20072208

    Article  PubMed  Google Scholar 

  • Bubeck Wardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, DeLeo FR (2008) Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J Infect Dis 198(8):1166–1170. doi:10.1086/592053

    Article  PubMed  Google Scholar 

  • Cheng P, Liu T, Zhou WY, Zhuang Y, Peng LS, Zhang JY, Yin ZN, Mao XH, Guo G, Shi Y, Zou QM (2012) Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia. BMC immunology 13:38. doi:10.1186/1471-2172-13-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL, Cheng G, Modlin RL, Miller LS (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Investig 120(5):1762–1773. doi:10.1172/JCI40891

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C, Granick JL, Matsushima H, Takashima A, Iwakura Y, Cheung AL, Cheng G, Lee DJ, Simon SI, Miller LS (2012) Neutrophil-derived IL-1beta is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog 8(11):e1003047. doi:10.1371/journal.ppat.1003047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J, McElvania-Tekippe E, Ting JP, Duncan JA (2009) Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS ONE 4(10):e7446. doi:10.1371/journal.pone.0007446

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis BK, Roberts RA, Huang MT, Willingham SB, Conti BJ, Brickey WJ, Barker BR, Kwan M, Taxman DJ, Accavitti-Loper MA, Duncan JA, Ting JP (2011) Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol 186(3):1333–1337. doi:10.4049/jimmunol.1003111

    Article  CAS  PubMed  Google Scholar 

  • Dumont AL, Nygaard TK, Watkins RL, Smith A, Kozhaya L, Kreiswirth BN, Shopsin B, Unutmaz D, Voyich JM, Torres VJ (2011) Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 79(3):814–825. doi:10.1111/j.1365-2958.2010.07490.x

    Article  CAS  PubMed  Google Scholar 

  • DuMont AL, Yoong P, Day CJ, Alonzo F III, McDonald WH, Jennings MP, Torres VJ (2013a) Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc Natl Acad Sci USA 110(26):10794–10799. doi:10.1073/pnas.1305121110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuMont AL, Yoong P, Surewaard BG, Benson MA, Nijland R, van Strijp JA, Torres VJ (2013b) Staphylococcus aureus elaborates leukocidin AB to mediate escape from within human neutrophils. Infect Immun 81(5):1830–1841. doi:10.1128/IAI.00095-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci USA 91(5):1863–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eigenbrod T, Franchi L, Munoz-Planillo R, Kirschning CJ, Freudenberg MA, Nunez G, Dalpke A (2012) Bacterial RNA mediates activation of caspase-1 and IL-1beta release independently of TLRs 3, 7, 9 and TRIF but is dependent on UNC93B. J Immunol 189(1):328–336. doi:10.4049/jimmunol.1103258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitton JE, Dell A, Shaw WV (1980) The amino acid sequence of the delta haemolysin of Staphylococcus aureus. FEBS Lett 115(2):209–212

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann RM, Schechtman J, Bennett R, Handel ML, Burmester GR, Tesser J, Modafferi D, Poulakos J, Sun G (2003) Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheum 48(4):927–934. doi:10.1002/art.10870

    Article  CAS  PubMed  Google Scholar 

  • Galloway JB, Hyrich KL, Mercer LK, Dixon WG, Watson KD, Lunt M, Consortium BCC, Symmons DP, British Society for Rheumatology Biologics R (2011) The risk of serious infections in patients receiving anakinra for rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register. Rheumatology 50(7):1341–1342. doi:10.1093/rheumatology/ker146

    Google Scholar 

  • Gouaux E, Hobaugh M, Song L (1997) alpha-Hemolysin, gamma-hemolysin, and leukocidin from Staphylococcus aureus: distant in sequence but similar in structure. Protein Sci: Publ Protein Soc 6(12):2631–2635. doi:10.1002/pro.5560061216

    Article  CAS  Google Scholar 

  • Greenberg JW, Fischer W, Joiner KA (1996) Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun 64(8):3318–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grundling A, Schneewind O (2007) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci USA 104(20):8478–8483. doi:10.1073/pnas.0701821104

    Article  PubMed  PubMed Central  Google Scholar 

  • Gudjonsson JE, Johnston A, Dyson M, Valdimarsson H, Elder JT (2007) Mouse models of psoriasis. J Invest Dermatol 127(6):1292–1308. doi:10.1038/sj.jid.5700807

    Article  CAS  PubMed  Google Scholar 

  • Guillet V, Roblin P, Werner S, Coraiola M, Menestrina G, Monteil H, Prevost G, Mourey L (2004) Crystal structure of leucotoxin S component: new insight into the Staphylococcal beta-barrel pore-forming toxins. J Biol Chem 279(39):41028–41037. doi:10.1074/jbc.M406904200

    Article  CAS  PubMed  Google Scholar 

  • Han SH, Kim JH, Martin M, Michalek SM, Nahm MH (2003) Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect Immun 71(10):5541–5548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanamsagar R, Torres V, Kielian T (2011) Inflammasome activation and IL-1beta/IL-18 processing are influenced by distinct pathways in microglia. J Neurochem 119(4):736–748. doi:10.1111/j.1471-4159.2011.07481.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanamsagar R, Aldrich A, Kielian T (2014) Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J Neurochem 129(4):704–711. doi:10.1111/jnc.12669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding MG, Zhang K, Conly J, Kubes P (2014) Neutrophil crawling in capillaries; a novel immune response to Staphylococcus aureus. PLoS Pathog 10(10):e1004379. doi:10.1371/journal.ppat.1004379

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22(23):2971–2972. doi:10.1093/bioinformatics/btl505

    Article  CAS  PubMed  Google Scholar 

  • Hermann C, Spreitzer I, Schroder NW, Morath S, Lehner MD, Fischer W, Schutt C, Schumann RR, Hartung T (2002) Cytokine induction by purified lipoteichoic acids from various bacterial species–role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN-gamma release. Eur J Immunol 32(2):541–551. doi:10.1002/1521-4141(200202)32:2<541:AID-IMMU541>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433(7025):523–527. doi:10.1038/nature03253

    Article  CAS  PubMed  Google Scholar 

  • Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ, Duncan JA, Broglie PM, Marketon K, Austermann J, Vogl T, Foell D, Niemann S, Peters G, Roth J, Loffler B (2012) Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 92(5):1069–1081. doi:10.1189/jlb.0112014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856. doi:10.1038/ni.1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huseby M, Shi K, Brown CK, Digre J, Mengistu F, Seo KS, Bohach GA, Schlievert PM, Ohlendorf DH, Earhart CA (2007) Structure and biological activities of beta toxin from Staphylococcus aureus. J Bacteriol 189(23):8719–8726. doi:10.1128/JB.00741-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhn YJ (2014) Risks for infection in patients with asthma (or other atopic conditions): is asthma more than a chronic airway disease? J Allergy Clin Immunol 134(2):247–257; quiz 258–249. doi:10.1016/j.jaci.2014.04.024

    Google Scholar 

  • Kappes U, Schliemann-Willers S, Bankova L, Heinemann C, Fischer TW, Ziemer M, Schubert H, Norgauer J, Fluhr JW, Elsner P (2004) The quality of human skin xenografts on SCID mice: a noninvasive bioengineering approach. Br J Dermatol 151(5):971–976. doi:10.1111/j.1365-2133.2004.06191.x

    Article  CAS  PubMed  Google Scholar 

  • Kebaier C, Chamberland RR, Allen IC, Gao X, Broglie PM, Hall JD, Jania C, Doerschuk CM, Tilley SL, Duncan JA (2012) Staphylococcus aureus alpha-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis 205(5):807–817. doi:10.1093/infdis/jir846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, Rojanasakul Y, Stehlik C (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36(3):464–476. doi:10.1016/j.immuni.2012.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kielian T (2004) Immunopathogenesis of brain abscess. J Neuroinflammation 1(1):16. doi:10.1186/1742-2094-1-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kielian T, Barry B, Hickey WF (2001) CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J Immunol 166(7):4634–4643

    Article  CAS  PubMed  Google Scholar 

  • Kitur K, Parker D, Nieto P, Ahn DS, Cohen TS, Chung S, Wachtel S, Bueno S, Prince A (2015) Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathog 11(4):e1004820. doi:10.1371/journal.ppat.1004820

    Article  PubMed  PubMed Central  Google Scholar 

  • Kretschmer D, Gleske AK, Rautenberg M, Wang R, Koberle M, Bohn E, Schoneberg T, Rabiet MJ, Boulay F, Klebanoff SJ, van Kessel KA, van Strijp JA, Otto M, Peschel A (2010) Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe 7(6):463–473. doi:10.1016/j.chom.2010.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Hedges SB (2011) TimeTree2: species divergence times on the iPhone. Bioinformatics 27(14):2023–2024. doi:10.1093/bioinformatics/btr315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, Benito Y, Barbu EM, Vazquez V, Hook M, Etienne J, Vandenesch F, Bowden MG (2007) Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315(5815):1130–1133. doi:10.1126/science.1137165

    Article  CAS  PubMed  Google Scholar 

  • Labrousse D, Perret M, Hayez D, Da Silva S, Badiou C, Couzon F, Bes M, Chavanet P, Lina G, Vandenesch F, Croisier-Bertin D, Henry T (2014) Kineret(R)/IL-1ra blocks the IL-1/IL-8 inflammatory cascade during recombinant Panton Valentine Leukocidin-triggered pneumonia but not during S. aureus infection. PLoS ONE 9(6):e97546. doi:10.1371/journal.pone.0097546

    Article  PubMed  PubMed Central  Google Scholar 

  • Loffler B, Hussain M, Grundmeier M, Bruck M, Holzinger D, Varga G, Roth J, Kahl BC, Proctor RA, Peters G (2010) Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog 6(1):e1000715. doi:10.1371/journal.ppat.1000715

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch NJ, Roscher S, Hartung T, Morath S, Matsushita M, Maennel DN, Kuraya M, Fujita T, Schwaeble WJ (2004) L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. J Immunol 172(2):1198–1202

    Article  CAS  PubMed  Google Scholar 

  • Maher BM, Mulcahy ME, Murphy AG, Wilk M, O’Keeffe KM, Geoghegan JA, Lavelle EC, McLoughlin RM (2013) Nlrp-3-driven interleukin 17 production by gammadeltaT cells controls infection outcomes during Staphylococcus aureus surgical site infection. Infect Immun 81(12):4478–4489. doi:10.1128/IAI.01026-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–232. doi:10.1038/nature04515

    Article  CAS  PubMed  Google Scholar 

  • Melehani JH, James DB, DuMont AL, Torres VJ, Duncan JA (2015) Staphylococcus aureus leukocidin A/B (LukAB) kills human monocytes via host NLRP3 and ASC when extracellular, but not intracellular. PLoS Pathog 11(6):e1004970. doi:10.1371/journal.ppat.1004970

    Article  PubMed  PubMed Central  Google Scholar 

  • Melican K, Michea Veloso P, Martin T, Bruneval P, Dumenil G (2013) Adhesion of Neisseria meningitidis to dermal vessels leads to local vascular damage and purpura in a humanized mouse model. PLoS Pathog 9(1):e1003139. doi:10.1371/journal.ppat.1003139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LS, Cho JS (2011) Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol 11(8):505–518. doi:10.1038/nri3010

    Article  CAS  PubMed  Google Scholar 

  • Miller LS, O’Connell RM, Gutierrez MA, Pietras EM, Shahangian A, Gross CE, Thirumala A, Cheung AL, Cheng G, Modlin RL (2006) MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24(1):79–91. doi:10.1016/j.immuni.2005.11.011

    Article  CAS  PubMed  Google Scholar 

  • Miller LS, Pietras EM, Uricchio LH, Hirano K, Rao S, Lin H, O’Connell RM, Iwakura Y, Cheung AL, Cheng G, Modlin RL (2007) Inflammasome-mediated production of IL-1beta is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol 179(10):6933–6942

    Article  CAS  PubMed  Google Scholar 

  • Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’Shea J, Holland SM, Paul WE, Douek DC (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452(7188):773–776. doi:10.1038/nature06764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller S, Wolf AJ, Iliev ID, Berg BL, Underhill DM, Liu GY (2015) Poorly cross-linked peptidoglycan in MRSA due to mecA induction activates the inflammasome and exacerbates immunopathology. Cell Host Microbe 18(5):604–612. doi:10.1016/j.chom.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Planillo R, Franchi L, Miller LS, Nunez G (2009) A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol 183(6):3942–3948. doi:10.4049/jimmunol.0900729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy AG, O’Keeffe KM, Lalor SJ, Maher BM, Mills KH, McLoughlin RM (2014) Staphylococcus aureus infection of mice expands a population of memory gammadelta T cells that are protective against subsequent infection. J Immunol 192(8):3697–3708. doi:10.4049/jimmunol.1303420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama M, Kurokawa K, Nakamura K, Lee BL, Sekimizu K, Kubagawa H, Hiramatsu K, Yagita H, Okumura K, Takai T, Underhill DM, Aderem A, Ogasawara K (2012) Inhibitory receptor paired Ig-like receptor B is exploited by Staphylococcus aureus for virulence. J Immunol 189(12):5903–5911. doi:10.4049/jimmunol.1201940

    Article  CAS  PubMed  Google Scholar 

  • Niebuhr M, Baumert K, Heratizadeh A, Satzger I, Werfel T (2014) Impaired NLRP3 inflammasome expression and function in atopic dermatitis due to Th2 milieu. Allergy 69(8):1058–1067. doi:10.1111/all.12428

    Article  CAS  PubMed  Google Scholar 

  • Otto M (2010) Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol 64:143–162. doi:10.1146/annurev.micro.112408.134309

    Article  CAS  PubMed  Google Scholar 

  • Pedelacq JD, Maveyraud L, Prevost G, Baba-Moussa L, Gonzalez A, Courcelle E, Shepard W, Monteil H, Samama JP, Mourey L (1999) The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 7(3):277–287

    Article  CAS  PubMed  Google Scholar 

  • Percy MG, Grundling A (2014) Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol 68:81–100. doi:10.1146/annurev-micro-091213-112949

    Article  CAS  PubMed  Google Scholar 

  • Perret M, Badiou C, Lina G, Burbaud S, Benito Y, Bes M, Cottin V, Couzon F, Juruj C, Dauwalder O, Goutagny N, Diep BA, Vandenesch F, Henry T (2012) Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cell Microbiol 14(7):1019–1036. doi:10.1111/j.1462-5822.2012.01772.x

    Article  CAS  PubMed  Google Scholar 

  • Peschel A, Otto M (2013) Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol 11(10):667–673. doi:10.1038/nrmicro3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radian AD, Khare S, Chu LH, Dorfleutner A, Stehlik C (2015) ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides. Mol Immunol 67(2 Pt B):294–302. doi:10.1016/j.molimm.2015.06.013

    Google Scholar 

  • Ragle BE, Bubeck Wardenburg J (2009) Anti-alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect Immun 77(7):2712–2718. doi:10.1128/IAI.00115-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Robles T, Alonzo F III, Kozhaya L, Lacy DB, Unutmaz D, Torres VJ (2013) Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14(4):453–459. doi:10.1016/j.chom.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  • Schiff MH, DiVittorio G, Tesser J, Fleischmann R, Schechtman J, Hartman S, Liu T, Solinger AM (2004) The safety of anakinra in high-risk patients with active rheumatoid arthritis: six-month observations of patients with comorbid conditions. Arthritis Rheum 50(6):1752–1760. doi:10.1002/art.20277

    Article  CAS  PubMed  Google Scholar 

  • Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274(25):17406–17409

    Article  CAS  PubMed  Google Scholar 

  • Sha W, Mitoma H, Hanabuchi S, Bao M, Weng L, Sugimoto N, Liu Y, Zhang Z, Zhong J, Sun B, Liu YJ (2014) Human NLRP3 inflammasome senses multiple types of bacterial RNAs. Proc Natl Acad Sci USA 111(45):16059–16064. doi:10.1073/pnas.1412487111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker CA, Reyes CN, Miao EA, Aderem A, Gotz F, Liu GY, Underhill DM (2010) Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. Cell Host Microbe 7(1):38–49. doi:10.1016/j.chom.2009.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siemieniuk RA, Meade MO, Alonso-Coello P, Briel M, Evaniew N, Prasad M, Alexander PE, Fei Y, Vandvik PO, Loeb M, Guyatt GH (2015) Corticosteroid therapy for patients hospitalized with community-acquired pneumonia: a systematic review and meta-analysis. Ann Int Med 163(7):519–528. doi:10.7326/M15-0715

    Article  PubMed  Google Scholar 

  • Soong G, Chun J, Parker D, Prince A (2012) Staphylococcus aureus activation of caspase 1/calpain signaling mediates invasion through human keratinocytes. J Infect Dis 205(10):1571–1579. doi:10.1093/infdis/jis244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soong G, Paulino F, Wachtel S, Parker D, Wickersham M, Zhang D, Brown A, Lauren C, Dowd M, West E, Horst B, Planet P, Prince A (2015) Methicillin-resistant Staphylococcus aureus adaptation to human keratinocytes. mBio 6(2). doi:10.1128/mBio.00289-15

  • Spaan AN, Henry T, van Rooijen WJ, Perret M, Badiou C, Aerts PC, Kemmink J, de Haas CJ, van Kessel KP, Vandenesch F, Lina G, van Strijp JA (2013) The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe 13(5):584–594. doi:10.1016/j.chom.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  • Spaan AN, Vrieling M, Wallet P, Badiou C, Reyes-Robles T, Ohneck EA, Benito Y, de Haas CJ, Day CJ, Jennings MP, Lina G, Vandenesch F, van Kessel KP, Torres VJ, van Strijp JA, Henry T (2014) The staphylococcal toxins gamma-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat Commun 5:5438. doi:10.1038/ncomms6438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara T, Yamashita D, Kato K, Peng Z, Ueda J, Kaneko J, Kamio Y, Tanaka Y, Yao M (2015) Structural basis for pore-forming mechanism of staphylococcal alpha-hemolysin. Toxicon: Official J Int Soc Toxinol 108:226–231. doi:10.1016/j.toxicon.2015.09.033

    Article  CAS  Google Scholar 

  • Syed AK, Reed TJ, Clark KL, Boles BR, Kahlenberg JM (2015) Staphlyococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation. Infect Immun 83(9):3428–3437. doi:10.1128/IAI.00401-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima A, Iwase T, Shinji H, Seki K, Mizunoe Y (2009) Inhibition of endothelial interleukin-8 production and neutrophil transmigration by Staphylococcus aureus beta-hemolysin. Infect Immun 77(1):327–334. doi:10.1128/IAI.00748-08

    Article  CAS  PubMed  Google Scholar 

  • Thammavongsa V, Kim HK, Missiakas D, Schneewind O (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13(9):529–543. doi:10.1038/nrmicro3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen IP, Dumont AL, James DB, Yoong P, Saville BR, Soper N, Torres VJ, Creech CB (2014) Children with invasive Staphylococcus aureus disease exhibit a potently neutralizing antibody response to the cytotoxin LukAB. Infect Immun 82(3):1234–1242. doi:10.1128/IAI.01558-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661. doi:10.1128/CMR.00134-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Tseng CW, Biancotti JC, Berg BL, Gate D, Kolar SL, Muller S, Rodriguez MD, Rezai-Zadeh K, Fan X, Beenhouwer DO, Town T, Liu GY (2015) Increased susceptibility of humanized NSG mice to panton-valentine leukocidin and Staphylococcus aureus skin infection. PLoS Pathog 11(11):e1005292. doi:10.1371/journal.ppat.1005292

    Article  PubMed  PubMed Central  Google Scholar 

  • van de Wetering JK, van Eijk M, van Golde LM, Hartung T, van Strijp JA, Batenburg JJ (2001) Characteristics of surfactant protein A and D binding to lipoteichoic acid and peptidoglycan, 2 major cell wall components of gram-positive bacteria. J Infect Dis 184(9):1143–1151. doi:10.1086/323746

    Article  PubMed  Google Scholar 

  • Ventura CL, Malachowa N, Hammer CH, Nardone GA, Robinson MA, Kobayashi SD, DeLeo FR (2010) Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS ONE 5(7):e11634. doi:10.1371/journal.pone.0011634

    Article  PubMed  PubMed Central  Google Scholar 

  • Villaruz AE, Bubeck Wardenburg J, Khan BA, Whitney AR, Sturdevant DE, Gardner DJ, DeLeo FR, Otto M (2009) A point mutation in the agr locus rather than expression of the Panton-Valentine leukocidin caused previously reported phenotypes in Staphylococcus aureus pneumonia and gene regulation. J Infect Dis 200(5):724–734. doi:10.1086/604728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walev I, Weller U, Strauch S, Foster T, Bhakdi S (1996) Selective killing of human monocytes and cytokine release provoked by sphingomyelinase (beta-toxin) of Staphylococcus aureus. Infect Immun 64(8):2974–2979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13(12):1510–1514. doi:10.1038/nm1656

    Article  CAS  PubMed  Google Scholar 

  • Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6(4):276–287. doi:10.1038/nrmicro1861

    Article  CAS  PubMed  Google Scholar 

  • Wilke GA, Bubeck Wardenburg J (2010) Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci USA 107(30):13473–13478. doi:10.1073/pnas.1001815107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M, Tanaka I (2011) Crystal structure of the octameric pore of staphylococcal gamma-hemolysin reveals the beta-barrel pore formation mechanism by two components. Proc Natl Acad Sci USA 108(42):17314–17319. doi:10.1073/pnas.1110402108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163(1):1–5

    CAS  PubMed  Google Scholar 

  • Zhang G, Zhang L, Duff GW (1997) A negative regulatory region containing a glucocorticosteroid response element (nGRE) in the human interleukin-1beta gene. DNA Cell Biol 16(2):145–152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ research has been supported by the National Institutes of Health: JHM received support from UNC MSTP T32GM008719 and UNC Predoctoral Training in Pharmacologic Sciences T32GM007040, and JAD was supported by research grant R01AI088255. JAD is an awardee of the Burroughs Wellcome Fund Career Award for Medical Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Duncan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Melehani, J.H., Duncan, J.A. (2016). Inflammasome Activation Can Mediate Tissue-Specific Pathogenesis or Protection in Staphylococcus aureus Infection. In: Backert, S. (eds) Inflammasome Signaling and Bacterial Infections. Current Topics in Microbiology and Immunology, vol 397. Springer, Cham. https://doi.org/10.1007/978-3-319-41171-2_13

Download citation

Publish with us

Policies and ethics