Skip to main content

Dopamine Metabolism and Reactive Oxygen Species Production

  • Chapter
  • First Online:

Abstract

The catecholamine dopamine is a neurotransmitter involved in movement control; it is mainly produced in the adrenal glands and the brain. In the latter, a large number of dopaminergic neurons can be found in the substantia nigra pars compacta. The specific degeneration of neurons in the substantia nigra pars compacta causes rigidity, tremor, and bradykinesia, all of which are hallmark symptoms of Parkinson’s disease. One of the potential molecular factors that might induce the loss of dopaminergic neurons is an elevated level of reactive oxygen species which causes cell damage over time. Dopaminergic neurons are especially prone to ROS production, since dopamine, as well as its precursors and downstream metabolites, is readily oxidized enzymatically or via autoxidation. In this chapter we will describe how dopamine metabolism and reactive oxygen species are linked and show possible consequences of excessive ROS production and how dopaminergic neurons can react to this stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AADC:

Aromatic amino acid decarboxylase

ALDH:

Aldehyde dehydrogenase

ANLSH:

Astrocyte–neuron lactate shuttle hypothesis

ApN:

Aminopeptidase N

BBB:

Blood–brain barrier

BH4:

Tetrahydrobiopterin

CA:

Catecholamine

COMT:

Catechol-O-methyltransferase

DA:

Dopamine

DAB:

Dopamine-beta-hydroxylase

DAT:

Dopamine transporter

DHPR:

Dihydropteridine reductase

DOPAC:

3,4-Dihydroxyphenylacetic acid

DOPAL:

3,4-Dihydroxyphenylaldehyde

DOPET:

3,4-Dihydroxyphenylethanol

DT Diaphorase:

NAD(P)H:quinone oxidoreductase

E:

Epinephrine

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

HVA:

Homovanillic acid

l-DOPA:

l-3,4-Dihydroxyphenylalanine

MAO:

Monoamine oxidase

MCT:

Monocarboxylate transporter

NE:

Norepinephrine

NM:

Neuromelanin

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PD:

Parkinson’s disease

PNMT:

Phenylethanolamine-N-methyltransferase

PST:

Phenylsulfotransferase

PTP:

Permeability transition pore

ROS:

Reactive oxygen species

SN:

Substantia nigra

SOD:

Superoxide dismutase

TCA:

Tricarboxylic acid

TH:

Tyrosine hydroxylase

UGT:

Uridine diphosphoglucuronosyltransferases

VMAT2:

Vesicular monoamine transporter 2

γ-GT:

Gamma-glutamyl transpeptidase

References

  1. Carlsson, A.: The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 11, 490–493 (1959)

    CAS  PubMed  Google Scholar 

  2. Blaschko, H.: The specific action of L-dopa decarboxylase. J. Physiol. Lond. 96, 50–51 (1939)

    CAS  Google Scholar 

  3. Meiser, J., Weindl, D., Hiller, K.: Complexity of dopamine metabolism. Cell Commun. Signaling 11, 34 (2013)

    Article  CAS  Google Scholar 

  4. Fitzpatrick, L.A., Calkins, E., Summerson, W.H.: Mammalian tyrosinase: melanin formation by ultraviolet irradiation. Arch. Dermatol. Syphilol. 59, 620–625 (1949)

    Article  CAS  Google Scholar 

  5. Raper, H.S.: The tyrosinase-tyrosine reaction. Biochem. J. 21, 89–96 (1927)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raper, H.S.: The aerobic oxidases. Physiol. Rev. 8, 245–282 (1928)

    CAS  Google Scholar 

  7. Rios, M., Habecker, B., Sasaoka, T., Eisenhofer, G., Tian, H., Landis, S., Chikaraishi, D., Roffler-Tarlov, S.: Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase. J. Neurosci. Off. J. Soc. Neurosci. 19, 3519–3526 (1999)

    CAS  Google Scholar 

  8. Bromek, E., Haduch, A., Gołembiowska, K., Daniel, W.A.: Cytochrome P450 mediates dopamine formation in the brain in vivo. J. Neurochem. 118, 806–815 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Eriksen, J., Jørgensen, T.N., Gether, U.: Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges. J. Neurochem. 113, 27–41 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Uutela, P., Karhu, L., Piepponen, P., Käenmäki, M., Ketola, R.A., Kostiainen, R.: Discovery of dopamine glucuronide in rat and mouse brain microdialysis samples using liquid chromatography tandem mass spectrometry. Anal. Chem. 81, 427–434 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. Swahn, C.G., Wiesel, F.A.: Determination of conjugated monoamine metabolites in brain tissue. J. Neural Transm. 39, 281–290 (1976)

    Article  CAS  PubMed  Google Scholar 

  12. Männistö, P.T., Ulmanen, I., Lundström, K., Taskinen, J., Tenhunen, J., Tilgmann, C., Kaakkola, S.: Characteristics of catechol O-methyl-transferase (COMT) and properties of selective COMT inhibitors. Prog. Drug Res. 39, 291–350 (1992)

    PubMed  Google Scholar 

  13. Tukey, R.H., Strassburg, C.P.: Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 40, 581–616 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. Alagarsamy, S., Phillips, M., Pappas, T., Johnson, K.M.: Dopamine neurotoxicity in cortical neurons. Drug Alcohol Depend. 48, 105–111 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y., Edwards, R.H.: The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu. Rev. Neurosci. 20, 125–156 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Zucca, F.A., Basso, E., Cupaioli, F.A., Ferrari, E., Sulzer, D., Casella, L., Zecca, L.: Neuromelanin of the human substantia nigra: an update. Neurotox. Res. 25, 13–23 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. Fenichel, G.M., Bazelon, M.: Studies on neuromelanin. II. Melanin in the brainstems of infants and children. Neurology 18, 817–820 (1968)

    Article  CAS  PubMed  Google Scholar 

  18. Foley, J.M., Baxter, D.: On the nature of pigment granules in the cells of the locus coeruleus and substantia nigra. J. Neuropathol. Exp. Neurol. 17, 586–598 (1958)

    Article  CAS  PubMed  Google Scholar 

  19. Graham, D.G.: On the origin and significance of neuromelanin. Arch. Pathol. Lab. Med. 103, 359–362 (1979)

    CAS  PubMed  Google Scholar 

  20. Bazelon, M., Fenichel, G.M., Randall, J.: Studies on neuromelanin. I. A melanin system in the human adult brainstem. Neurology 17, 512–519 (1967)

    Article  CAS  PubMed  Google Scholar 

  21. Bogerts, B.: A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker. J. Comp. Neurol. 197, 63–80 (1981)

    Article  CAS  PubMed  Google Scholar 

  22. Cowen, D.: The melanoneurons of the human cerebellum (nucleus pigmentosus cerebellaris) and homologues in the monkey. J. Neuropathol. Exp. Neurol. 45, 205–221 (1986)

    Article  CAS  PubMed  Google Scholar 

  23. Matzuk, M.M., Saper, C.B.: Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease. Ann. Neurol. 18, 552–555 (1985)

    Article  CAS  PubMed  Google Scholar 

  24. Rosengren, E., Linder-Eliasson, E., Carlsson, A.: Detection of 5-S-cysteinyldopamine in human brain. J. Neural Transm. 63, 247–253 (1985)

    Article  CAS  PubMed  Google Scholar 

  25. Odh, G., Carstam, R., Paulson, J., Wittbjer, A., Rosengren, E., Rorsman, H.: Neuromelanin of the human substantia nigra: a mixed-type melanin. J. Neurochem. 62, 2030–2036 (1994)

    Article  CAS  PubMed  Google Scholar 

  26. Napolitano, A., Manini, P., d’Ischia, M.: Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr. Med. Chem. 18, 1832–1845 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Engelen, M., Vanna, R., Bellei, C., Zucca, F.A., Wakamatsu, K., Monzani, E., Ito, S., Casella, L., Zecca, L.: Neuromelanins of human brain have soluble and insoluble components with dolichols attached to the melanic structure. PLoS One 7, e48490 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sulzer, D., Bogulavsky, J., Larsen, K.E., Behr, G., Karatekin, E., Kleinman, M.H., Turro, N., Krantz, D., Edwards, R.H., Greene, L.A., et al.: Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl. Acad. Sci. 97, 11869–11874 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. D’Amato, R.J., Lipman, Z.P., Snyder, S.H.: Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science 231, 987–989 (1986)

    Article  PubMed  Google Scholar 

  30. Lindquist, N.G., Larsson, B.S., Lydén-Sokolowski, A.: Autoradiography of [14C]paraquat or [14C]diquat in frogs and mice: accumulation in neuromelanin. Neurosci. Lett. 93, 1–6 (1988)

    Article  CAS  PubMed  Google Scholar 

  31. Zecca, L., Pietra, R., Goj, C., Mecacci, C., Radice, D., Sabbioni, E.: Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J. Neurochem. 62, 1097–1101 (1994)

    Article  CAS  PubMed  Google Scholar 

  32. Zecca, L., Bellei, C., Costi, P., Albertini, A., Monzani, E., Casella, L., Gallorini, M., Bergamaschi, L., Moscatelli, A., Turro, N.J., et al.: New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc. Natl. Acad. Sci. U. S. A. 105, 17567–17572 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Double, K.L., Gerlach, M., Schünemann, V., Trautwein, A.X., Zecca, L., Gallorini, M., Youdim, M.B.H., Riederer, P., Ben-Shachar, D.: Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem. Pharmacol. 66, 489–494 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Zecca, L., Casella, L., Albertini, A., Bellei, C., Zucca, F.A., Engelen, M., Zadlo, A., Szewczyk, G., Zareba, M., Sarna, T.: Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson’s disease. J. Neurochem. 106, 1866–1875 (2008)

    CAS  PubMed  Google Scholar 

  35. Faucheux, B.A., Martin, M.-E., Beaumont, C., Hauw, J.-J., Agid, Y., Hirsch, E.C.: Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J. Neurochem. 86, 1142–1148 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. Sofic, E., Riederer, P., Heinsen, H., Beckmann, H., Reynolds, G.P., Hebenstreit, G., Youdim, M.B.: Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J. Neural Transm. 74, 199–205 (1988)

    Article  CAS  PubMed  Google Scholar 

  37. Langston, J.W., Forno, L.S., Tetrud, J., Reeves, A.G., Kaplan, J.A., Karluk, D.: Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol. 46, 598–605 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. McGeer, P.L., Itagaki, S., Boyes, B.E., McGeer, E.G.: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1291 (1988)

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, W., Zecca, L., Wilson, B., Ren, H.-W., Wang, Y.-J., Wang, X.-M., Hong, J.-S.: Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death. Front. Biosci., Elite Ed. 5, 1–11 (2013)

    Article  Google Scholar 

  40. Wilms, H., Rosenstiel, P., Sievers, J., Deuschl, G., Zecca, L., Lucius, R.: Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J. 17, 500–502 (2003)

    CAS  PubMed  Google Scholar 

  41. McGeer, P.L., Schwab, C., Parent, A., Doudet, D.: Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann. Neurol. 54, 599–604 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. Kim, W.G., Mohney, R.P., Wilson, B., Jeohn, G.H., Liu, B., Hong, J.S.: Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. Off. J. Soc. Neurosci. 20, 6309–6316 (2000)

    CAS  Google Scholar 

  43. Zecca, L., Zucca, F.A., Albertini, A., Rizzio, E., Fariello, R.G.: A proposed dual role of neuromelanin in the pathogenesis of Parkinson’s disease. Neurology 67, S8–S11 (2006)

    Article  CAS  PubMed  Google Scholar 

  44. Gluck, M.R., Zeevalk, G.D.: Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson’s disease and catecholamine-associated diseases. J. Neurochem. 91, 788–795 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. Cohen, G., Farooqui, R., Kesler, N.: Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc. Natl. Acad. Sci. U. S. A. 94, 4890–4894 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kristal, B.S., Conway, A.D., Brown, A.M., Jain, J.C., Ulluci, P.A., Li, S.W., Burke, W.J.: Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria. Free Radic. Biol. Med. 30, 924–931 (2001)

    Article  CAS  PubMed  Google Scholar 

  47. Cohen, G., Kesler, N.: Monoamine oxidase and mitochondrial respiration. J. Neurochem. 73, 2310–2315 (1999)

    Article  CAS  PubMed  Google Scholar 

  48. Hauptmann, N., Grimsby, J., Shih, J.C., Cadenas, E.: The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch. Biochem. Biophys. 335, 295–304 (1996)

    Article  CAS  PubMed  Google Scholar 

  49. Ben-Shachar, D., Zuk, R., Glinka, Y.: Dopamine neurotoxicity: inhibition of mitochondrial respiration. J. Neurochem. 64, 718–723 (1995)

    Article  CAS  PubMed  Google Scholar 

  50. Sherer, T.B., Betarbet, R., Testa, C.M., Seo, B.B., Richardson, J.R., Kim, J.H., Miller, G.W., Yagi, T., Matsuno-Yagi, A., Greenamyre, J.T.: Mechanism of toxicity in rotenone models of Parkinson’s disease. J. Neurosci. Off. J. Soc. Neurosci. 23, 10756–10764 (2003)

    CAS  Google Scholar 

  51. Panfili, E., Sandri, G., Ernster, L.: Distribution of glutathione peroxidases and glutathione reductase in rat brain mitochondria. FEBS Lett. 290, 35–37 (1991)

    Article  CAS  PubMed  Google Scholar 

  52. Berman, S.B., Hastings, T.G.: Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J. Neurochem. 73, 1127–1137 (1999)

    Article  CAS  PubMed  Google Scholar 

  53. Zigmond, M.J., Hastings, T.G., Perez, R.G.: Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity? Parkinsonism Relat. Disord. 8, 389–393 (2002)

    Article  PubMed  Google Scholar 

  54. Graumann, R., Paris, I., Martinez-Alvarado, P., Rumanque, P., Perez-Pastene, C., Cardenas, S.P., Marin, P., Diaz-Grez, F., Caviedes, R., Caviedes, P., et al.: Oxidation of dopamine to aminochrome as a mechanism for neurodegeneration of dopaminergic systems in Parkinson’s disease. Possible neuroprotective role of DT-diaphorase. Pol. J. Pharmacol. 54, 573–579 (2002)

    CAS  PubMed  Google Scholar 

  55. Miyazaki, I., Asanuma, M.: Dopaminergic neuron-specific oxidative stress caused by dopamine itself. Acta Med. Okayama 62, 141–150 (2008)

    CAS  PubMed  Google Scholar 

  56. Smythies, J., Galzigna, L.: The oxidative metabolism of catecholamines in the brain: a review. Biochim. Biophys. Acta 1380, 159–162 (1998)

    Article  CAS  PubMed  Google Scholar 

  57. Nathan, C.: Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051–3064 (1992)

    CAS  PubMed  Google Scholar 

  58. Graham, D.G.: Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633–643 (1978)

    CAS  PubMed  Google Scholar 

  59. Chesis, P.L., Levin, D.E., Smith, M.T., Ernster, L., Ames, B.N.: Mutagenicity of quinones: pathways of metabolic activation and detoxification. Proc. Natl. Acad. Sci. U. S. A. 81, 1696–1700 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ross, D., Kepa, J.K., Winski, S.L., Beall, H.D., Anwar, A., Siegel, D.: NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem. Biol. Interact. 129, 77–97 (2000)

    Article  CAS  PubMed  Google Scholar 

  61. Bindoli, A., Rigobello, M.P., Galzigna, L.: Toxicity of aminochromes. Toxicol. Lett. 48, 3–20 (1989)

    Article  CAS  PubMed  Google Scholar 

  62. Masoud, S.T., Vecchio, L.M., Bergeron, Y., Hossain, M.M., Nguyen, L.T., Bermejo, M.K., Kile, B., Sotnikova, T.D., Siesser, W.B., Gainetdinov, R.R., et al.: Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol. Dis. 74C, 66–75 (2014)

    Google Scholar 

  63. Imai, Y., Soda, M., Takahashi, R.: Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 275, 35661–35664 (2000)

    Article  CAS  PubMed  Google Scholar 

  64. Kuhn, D.M., Francescutti-Verbeem, D.M., Thomas, D.M.: Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage. Ann. N. Y. Acad. Sci. 1074, 31–41 (2006)

    Article  CAS  PubMed  Google Scholar 

  65. Hauser, R.A.: Levodopa: past, present, and future. Eur. Neurol. 62, 1–8 (2009)

    Article  CAS  PubMed  Google Scholar 

  66. Przedborski, S., Jackson-Lewis, V., Muthane, U., Jiang, H., Ferreira, M., Naini, A.B., Fahn, S.: Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity. Ann. Neurol. 34, 715–723 (1993)

    Article  CAS  PubMed  Google Scholar 

  67. Rugbjerg, K., Friis, S., Lassen, C.F., Ritz, B., Olsen, J.H.: Malignant melanoma, breast cancer and other cancers in patients with Parkinson’s disease. Int. J. Cancer 131, 1904–1911 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Herrero Hernández, E.: Pigmentation genes link Parkinson’s disease to melanoma, opening a window on both etiologies. Med. Hypotheses 72, 280–284 (2009)

    Article  PubMed  Google Scholar 

  69. Wirdefeldt, K., Weibull, C.E., Chen, H., Kamel, F., Lundholm, C., Fang, F., Ye, W.: Parkinson’s disease and cancer: a register-based family study. Am. J. Epidemiol. 179, 85–94 (2014)

    Article  PubMed  Google Scholar 

  70. Ohshima, H., Tatemichi, M., Sawa, T.: Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem. Biophys. 417, 3–11 (2003)

    Article  CAS  PubMed  Google Scholar 

  71. Reuter, S., Gupta, S.C., Chaturvedi, M.M., Aggarwal, B.B.: Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603–1616 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pfützner, W., Przybilla, B.: Malignant melanoma and levodopa: is there a relationship? Two new cases and a review of the literature. J. Am. Acad. Dermatol. 37, 332–336 (1997)

    Article  PubMed  Google Scholar 

  73. Rampen, F.H.: Levodopa and melanoma: three cases and review of literature. J. Neurol. Neurosurg. Psychiatry 48, 585–588 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fiala, K.H., Whetteckey, J., Manyam, B.V.: Malignant melanoma and levodopa in Parkinson’s disease: causality or coincidence? Parkinsonism Relat. Disord. 9, 321–327 (2003)

    Article  PubMed  Google Scholar 

  75. Olsen, J.H., Friis, S., Frederiksen, K.: Malignant melanoma and other types of cancer preceding Parkinson disease. Epidemiology 17, 582–587 (2006)

    Article  PubMed  Google Scholar 

  76. Schulz, J.B., Lindenau, J., Seyfried, J., Dichgans, J.: Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem. 267, 4904–4911 (2000)

    Article  CAS  PubMed  Google Scholar 

  77. Ricci, G., Volpi, L., Pasquali, L., Petrozzi, L., Siciliano, G.: Astrocyte-neuron interactions in neurological disorders. J. Biol. Phys. 35, 317–336 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pellerin, L.: Lactate as a pivotal element in neuron-glia metabolic cooperation. Neurochem. Int. 43, 331–338 (2003)

    Article  CAS  PubMed  Google Scholar 

  79. Pellerin, L., Pellegri, G., Bittar, P.G., Charnay, Y., Bouras, C., Martin, J.L., Stella, N., Magistretti, P.J.: Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev. Neurosci. 20, 291–299 (1998)

    Article  CAS  PubMed  Google Scholar 

  80. Kirchhoff, F., Dringen, R., Giaume, C.: Pathways of neuron-astrocyte interactions and their possible role in neuroprotection. Eur. Arch. Psychiatry Clin. Neurosci. 251, 159–169 (2001)

    Article  CAS  PubMed  Google Scholar 

  81. Dringen, R., Gutterer, J.M., Hirrlinger, J.: Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur. J. Biochem. 267, 4912–4916 (2000)

    Article  CAS  PubMed  Google Scholar 

  82. Hoffmann, G.F., Assmann, B., Bräutigam, C., Dionisi-Vici, C., Häussler, M., de Klerk, J.B.C., Naumann, M., Steenbergen-Spanjers, G.C.H., Strassburg, H.-M., Wevers, R.A.: Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann. Neurol. 54(Suppl 6), S56–S65 (2003)

    Article  CAS  PubMed  Google Scholar 

  83. Hyland, K.: Inherited disorders affecting dopamine and serotonin: critical neurotransmitters derived from aromatic amino acids. J. Nutr. 137, 1568S–1572S (2007)

    CAS  PubMed  Google Scholar 

  84. Coşkun, T., Karagöz, T., Kalkanoğlu, S., Tokatli, A., Ozalp, I., Thöny, B., Blau, N.: Guanosine triphosphate cyclohydrolase I deficiency: a rare cause of hyperphenylalaninemia. Turk. J. Pediatr. 41, 231–237 (1999)

    PubMed  Google Scholar 

  85. Ritz, B.R., Manthripragada, A.D., Costello, S., Lincoln, S.J., Farrer, M.J., Cockburn, M., Bronstein, J.: Dopamine transporter genetic variants and pesticides in Parkinson’s disease. Environ. Health Perspect. 117, 964–969 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Javitch, J.A., D’Amato, R.J., Strittmatter, S.M., Snyder, S.H.: Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. U. S. A. 82, 2173–2177 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ransom, B.R., Kunis, D.M., Irwin, I., Langston, J.W.: Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci. Lett. 75, 323–328 (1987)

    Article  CAS  PubMed  Google Scholar 

  88. Radad, K., Rausch, W.-D., Gille, G.: Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 49, 379–386 (2006)

    Article  CAS  PubMed  Google Scholar 

  89. Lee, D.-H., Lee, Y.J.: Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem. Toxicol. 49, 271–280 (2011)

    Article  CAS  PubMed  Google Scholar 

  90. Choi, W.-S., Kruse, S.E., Palmiter, R.D., Xia, Z.: Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc. Natl. Acad. Sci. 105, 15136–15141 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Choi, W.-S., Palmiter, R.D., Xia, Z.: Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J. Cell Biol. 192, 873–882 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ren, Y., Liu, W., Jiang, H., Jiang, Q., Feng, J.: Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J. Biol. Chem. 280, 34105–34112 (2005)

    Article  CAS  PubMed  Google Scholar 

  93. Watabe, M., Nakaki, T.: Mitochondrial complex I inhibitor rotenone-elicited dopamine redistribution from vesicles to cytosol in human dopaminergic SH-SY5Y cells. J. Pharmacol. Exp. Ther. 323, 499–507 (2007)

    Article  CAS  PubMed  Google Scholar 

  94. Fitzmaurice, A.G., Rhodes, S.L., Lulla, A., Murphy, N.P., Lam, H.A., O’Donnell, K.C., Barnhill, L., Casida, J.E., Cockburn, M., Sagasti, A., et al.: Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc. Natl. Acad. Sci. U. S. A. 110, 636–641 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the Fonds National de la Recherche (FNR) Luxembourg (ATTRACT A10/03, THActivity CORE and AFR 5782260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Hiller Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Delcambre, S., Nonnenmacher, Y., Hiller, K. (2016). Dopamine Metabolism and Reactive Oxygen Species Production. In: Buhlman, L. (eds) Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-42139-1_2

Download citation

Publish with us

Policies and ethics