Skip to main content

Regulation of Cell Division

  • Chapter
  • First Online:
Vertebrate Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 953))

Abstract

The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-46095-6_11

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-46095-6_11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGC-type:

Protein kinase A, G and C families

Anp32:

Acidic nuclear phosphoprotein 32 family

APC/C:

Anaphase-promoting complex/cyclosome

Arpp19:

cAMP-regulated phosphoprotein, 19 kDa

ATP:

Adenosine triphosphate

βTRCP:

Beta-transducin repeat-containing protein

Bub3:

Budding uninhibited by benzimidazoles 3

BubR1:

Budding uninhibited by benzimidazoles related 1

c-TAK1:

Cdc25C-associated protein kinase 1

CAK:

Cdk-activating kinase

CaMKII :

Calcium-calmodulin-dependent kinase II

cAMP:

Cyclic adenosine monophosphate

Cdc:

Cell division cycle

Cdks:

Cyclin-dependent kinases

Chk:

Checkpoint kinase

CIP2A:

Cancerous inhibitor of PP2A

CK1:

Casein kinase 1

CPC:

Chromosomal passenger complex

CPE:

Cytoplasmic polyadenylation element

CPEB :

Cytoplasmic polyadenylation element-binding protein

CTD:

C-terminal domain

D-box :

Destruction box

DNA:

Deoxyribonucleic acid

E2F:

E2-factor

E6AP:

E6-associated protein

Emi1 :

Early mitotic inhibitor 1

Ensa:

Endosulfine α

ES cells:

Embryonic stem cells

FCP1:

TFIIF-associating CTD phosphatase-1

FZR :

Fizzy related/Cdh1

FZY :

Fizzy/Cdc20

G1:

Gap phase 1

GSK3β:

Glycogen synthase kinase 3 β

Gwl :

Greatwall

HECT:

Homologous to E6AP C-terminus

I2:

Inhibitor-2

ICM:

Inner cell mass

Knl1:

Kinetochore-null protein 1

KO:

Knockout

M-phase:

Mitotic phase and Cytokinesis

MII:

Meiosis II

Mad2:

Mitotic arrest deficient 2

MAPK:

Mitogen-activated protein kinase

MBT:

Midblastula transition

MCC :

Mitotic checkpoint complex

MPF:

Maturation-promoting factor

Myc:

Myc proto-oncogene protein

Myt1:

Membrane-associated tyrosine and threonine kinase 1

NEBD :

Nuclear envelope breakdown

PDK1:

Phosphoinositide-dependent kinase 1

PIPs:

PP1-interacting proteins

PKA :

Protein kinase A

Plx1:

Xenopus Polo-like kinase 1

PP1:

Protein phosphatase type 1

PP2A:

Protein phosphatase type 2A

PPMs :

Metal-dependent protein phosphatases

PPPs :

Phosphoprotein phosphatases

PPs:

Protein phosphatases

PRC1:

Protein regulator of cytokinesis 1

Repo-Man:

Recruits PP1 onto mitotic chromatin at anaphase

RING:

Really interesting new gene

Rsk2:

Ribosomal S6-kinase family member 2

S-phase:

Synthesis phase

SAC :

Spindle assembly checkpoint

SCF:

Skp1, Cullin and F-box protein

SCP:

Small CTD phosphatases

Sds22:

Suppressor of dis2

siRNA:

Small-interfering ribonucleic acid

T-loop:

Activation loop

Ubc:

Ubiquitin-conjugating enzyme

UTR:

Untranslated region

UV-light:

Ultraviolet light

Wee1:

Wee1-like protein kinase

XErp1 :

Xenopus Emi1 -related protein 1/Emi2

ZGA :

Zygotic genome activation

References

  • Abrieu A, Brassac T, Galas S, Fisher D, Labbe JC, Doree M (1998) The Polo-like kinase Plx1 is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. J Cell Sci 111(Pt 12):1751–1757

    CAS  PubMed  Google Scholar 

  • Afonso O, Matos I, Pereira AJ, Aguiar P, Lampson MA, Maiato H (2014) Feedback control of chromosome separation by a midzone Aurora B gradient. Science 345(6194):332–336. doi:10.1126/science.1251121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Veenstra GJ (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17(3):425–434. doi:10.1016/j.devcel.2009.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alessi DR, Street AJ, Cohen P, Cohen PT (1993) Inhibitor-2 functions like a chaperone to fold three expressed isoforms of mammalian protein phosphatase-1 into a conformation with the specificity and regulatory properties of the native enzyme. Eur J Biochem 213(3):1055–1066

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Fernandez M, Sanchez-Martinez R, Sanz-Castillo B, Gan PP, Sanz-Flores M, Trakala M, Ruiz-Torres M, Lorca T, Castro A, Malumbres M (2013) Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals. Proc Natl Acad Sci U S A 110(43):17374–17379. doi:10.1073/pnas.1310745110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoniw JF, Nimmo HG, Yeaman SJ, Cohen P (1977) Comparison of the substrate specificities of protein phosphatases involved in the regulation of glycogen metabolism in rabbit skeletal muscle. Biochem J 162(2):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artus J, Cohen-Tannoudji M (2008) Cell cycle regulation during early mouse embryogenesis. Mol Cell Endocrinol 282(1–2):78–86. doi:10.1016/j.mce.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  • Ballabeni A, Park IH, Zhao R, Wang W, Lerou PH, Daley GQ, Kirschner MW (2011) Cell cycle adaptations of embryonic stem cells. Proc Natl Acad Sci U S A 108(48):19252–19257. doi:10.1073/pnas.1116794108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow PW, Sherman MI (1972) The biochemistry of differentiation of mouse trophoblast: studies on polyploidy. J Embryol Exp Morphol 27(2):447–465

    CAS  PubMed  Google Scholar 

  • Blake-Hodek KA, Williams BC, Zhao Y, Castilho PV, Chen W, Mao Y, Yamamoto TM, Goldberg ML (2012) Determinants for activation of the atypical AGC kinase Greatwall during M phase entry. Mol Cell Biol 32(8):1337–1353. doi:10.1128/MCB.06525-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolton VN, Oades PJ, Johnson MH (1984) The relationship between cleavage, DNA replication, and gene expression in the mouse 2-cell embryo. J Embryol Exp Morphol 79:139–163

    CAS  PubMed  Google Scholar 

  • Brown NG, Watson ER, Weissmann F, Jarvis MA, VanderLinden R, Grace CR, Frye JJ, Qiao R, Dube P, Petzold G, Cho SE, Alsharif O, Bao J, Davidson IF, Zheng JJ, Nourse A, Kurinov I, Peters JM, Stark H, Schulman BA (2014) Mechanism of polyubiquitination by human anaphase-promoting complex: RING repurposing for ubiquitin chain assembly. Mol Cell 56(2):246–260. doi:10.1016/j.molcel.2014.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess A, Vigneron S, Brioudes E, Labbe JC, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A 107(28):12564–12569. doi:10.1073/pnas.0914191107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castilho PV, Williams BC, Mochida S, Zhao Y, Goldberg ML (2009) The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55delta, a phosphatase directed against CDK phosphosites. Mol Biol Cell 20(22):4777–4789. doi:10.1091/mbc.E09-07-0643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84(1):1–39. doi:10.1152/physrev.00013.2003

    Article  CAS  PubMed  Google Scholar 

  • Ciemerych MA, Czolowska R (1993) Differential chromatin condensation of female and male pronuclei in mouse zygotes. Mol Reprod Dev 34(1):73–80. doi:10.1002/mrd.1080340112

    Article  CAS  PubMed  Google Scholar 

  • Ciemerych MA, Maro B, Kubiak JZ (1999) Control of duration of the first two mitoses in a mouse embryo. Zygote 7(4):293–300

    Article  CAS  PubMed  Google Scholar 

  • Ciemerych MA, Sicinski P (2005) Cell cycle in mouse development. Oncogene 24(17):2877–2898. doi:10.1038/sj.onc.1208608

    Article  CAS  PubMed  Google Scholar 

  • Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M, Nasmyth K (1998) An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93(6):1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Clute P, Masui Y (1997) Microtubule dependence of chromosome cycles in Xenopus laevis blastomeres under the influence of a DNA synthesis inhibitor, aphidicolin. Dev Biol 185(1):1–13. doi:10.1006/dbio.1997.8540

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Fix O, Peters JM, Kirschner MW, Koshland D (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10(24):3081–3093

    Article  CAS  PubMed  Google Scholar 

  • Cundell MJ, Bastos RN, Zhang T, Holder J, Gruneberg U, Novak B, Barr FA (2013) The BEG (PP2A-B55/ENSA/Greatwall) pathway ensures cytokinesis follows chromosome separation. Mol Cell 52(3):393–405. doi:10.1016/j.molcel.2013.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363(6430):595–602. doi:10.1038/363595a0

    Article  PubMed  Google Scholar 

  • Dekens MP, Pelegri FJ, Maischein HM, Nusslein-Volhard C (2003) The maternal-effect gene futile cycle is essential for pronuclear congression and mitotic spindle assembly in the zebrafish zygote. Development 130(17):3907–3916

    Article  CAS  PubMed  Google Scholar 

  • Del Bene F, Tessmar-Raible K, Wittbrodt J (2004) Direct interaction of geminin and Six3 in eye development. Nature 427(6976):745–749. doi:10.1038/nature02292

    Article  PubMed  CAS  Google Scholar 

  • Di Fiore B, Davey NE, Hagting A, Izawa D, Mansfeld J, Gibson TJ, Pines J (2015) The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators. Dev Cell 32(3):358–372. doi:10.1016/j.devcel.2015.01.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Fiore B, Pines J (2007) Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. J Cell Biol 177(3):425–437. doi:10.1083/jcb.200611166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dohadwala M, da Cruz e Silva EF, Hall FL, Williams RT, Carbonaro-Hall DA, Nairn AC, Greengard P, Berndt N (1994) Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc Natl Acad Sci U S A 91(14):6408–6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duckworth BC, Weaver JS, Ruderman JV (2002) G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc Natl Acad Sci U S A 99(26):16794–16799. doi:10.1073/pnas.222661299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupre A, Daldello EM, Nairn AC, Jessus C, Haccard O (2014) Phosphorylation of ARPP19 by protein kinase A prevents meiosis resumption in Xenopus oocytes. Nat Commun 5:3318. doi:10.1038/ncomms4318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eiteneuer A, Seiler J, Weith M, Beullens M, Lesage B, Krenn V, Musacchio A, Bollen M, Meyer H (2014) Inhibitor-3 ensures bipolar mitotic spindle attachment by limiting association of SDS22 with kinetochore-bound protein phosphatase-1. EMBO J 33(22):2704–2720. doi:10.15252/embj.201489054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson AM, White LS, Donovan PJ, Piwnica-Worms H (2005) Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol Cell Biol 25(7):2853–2860. doi:10.1128/mcb.25.7.2853-2860.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez A, Brautigan DL, Lamb NJ (1992) Protein phosphatase type 1 in mammalian cell mitosis: chromosomal localization and involvement in mitotic exit. J Cell Biol 116(6):1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Ferrell JE Jr, Wu M, Gerhart JC, Martin GS (1991) Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol Cell Biol 11(4):1965–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrigno P, Langan TA, Cohen P (1993) Protein phosphatase 2A1 is the major enzyme in vertebrate cell extracts that dephosphorylates several physiological substrates for cyclin-dependent protein kinases. Mol Biol Cell 4(7):669–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley EA, Maldonado M, Kapoor TM (2011) Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat Cell Biol 13(10):1265–1271. doi:10.1038/ncb2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii-Yamamoto H, Kim JM, Arai K, Masai H (2005) Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells. J Biol Chem 280(13):12976–12987. doi:10.1074/jbc.M412224200

    Article  CAS  PubMed  Google Scholar 

  • Furnari B, Rhind N, Russell P (1997) Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277(5331):1495–1497

    Article  CAS  PubMed  Google Scholar 

  • Gamow EI, Prescott DM (1970) The cell life cycle during early embryogenesis of the mouse. Exp Cell Res 59(1):117–123

    Article  CAS  PubMed  Google Scholar 

  • Gerhart J, Wu M, Kirschner M (1984) Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J Cell Biol 98(4):1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Gharbi-Ayachi A, Labbe JC, Burgess A, Vigneron S, Strub JM, Brioudes E, Van-Dorsselaer A, Castro A, Lorca T (2010) The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 330(6011):1673–1677. doi:10.1126/science.1197048

    Article  CAS  PubMed  Google Scholar 

  • Girault JA, Shalaby IA, Rosen NL, Greengard P (1988) Regulation by cAMP and vasoactive intestinal peptide of phosphorylation of specific proteins in striatal cells in culture. Proc Natl Acad Sci U S A 85(20):7790–7794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349(6305):132–138. doi:10.1038/349132a0

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez MA, Tachibana KE, Adams DJ, van der Weyden L, Hemberger M, Coleman N, Bradley A, Laskey RA (2006) Geminin is essential to prevent endoreduplication and to form pluripotent cells during mammalian development. Genes Dev 20(14):1880–1884. doi:10.1101/gad.379706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotz J, Probst A, Ehler E, Hemmings B, Kues W (1998) Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proc Natl Acad Sci U S A 95(21):12370–12375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grallert A, Boke E, Hagting A, Hodgson B, Connolly Y, Griffiths JR, Smith DL, Pines J, Hagan IM (2015) A PP1-PP2A phosphatase relay controls mitotic progression. Nature 517(7532):94–98. doi:10.1038/nature14019

    Article  CAS  PubMed  Google Scholar 

  • Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD (2000) CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103(3):435–447

    Article  CAS  PubMed  Google Scholar 

  • Groisman I, Jung MY, Sarkissian M, Cao Q, Richter JD (2002) Translational control of the embryonic cell cycle. Cell 109(4):473–483

    Article  CAS  PubMed  Google Scholar 

  • Guadagno TM, Newport JW (1996) Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity. Cell 84(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Han SJ, Chen R, Paronetto MP, Conti M (2005) Wee1B is an oocyte-specific kinase involved in the control of meiotic arrest in the mouse. Curr Biol 15(18):1670–1676. doi:10.1016/j.cub.2005.07.056

    Article  CAS  PubMed  Google Scholar 

  • Hansen DV, Loktev AV, Ban KH, Jackson PK (2004) Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. Mol Biol Cell 15(12):5623–5634. doi:10.1091/mbc.E04-07-0598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Abe Y, Tanaka T, Yamamoto T, Okumura E, Kishimoto T (2012) Greatwall kinase and cyclin B-Cdk1 are both critical constituents of M-phase-promoting factor. Nat Commun 3:1059. doi:10.1038/ncomms2062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartley RS, Rempel RE, Maller JL (1996) In vivo regulation of the early embryonic cell cycle in Xenopus. Dev Biol 173(2):408–419. doi:10.1006/dbio.1996.0036

    Article  CAS  PubMed  Google Scholar 

  • Hauf S (2013) The spindle assembly checkpoint: progress and persistent puzzles. Biochem Soc Trans 41(6):1755–1760. doi:10.1042/BST20130240

    Article  CAS  PubMed  Google Scholar 

  • Hegarat N, Vesely C, Vinod PK, Ocasio C, Peter N, Gannon J, Oliver AW, Novak B, Hochegger H (2014) PP2A/B55 and Fcp1 regulate Greatwall and Ensa dephosphorylation during mitotic exit. PLoS Genet 10(1):e1004004. doi:10.1371/journal.pgen.1004004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hegemann B, Hutchins JR, Hudecz O, Novatchkova M, Rameseder J, Sykora MM, Liu S, Mazanek M, Lenart P, Heriche JK, Poser I, Kraut N, Hyman AA, Yaffe MB, Mechtler K, Peters JM (2011) Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 4(198):rs12. doi:10.1126/scisignal.2001993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hellmuth S, Bottger F, Pan C, Mann M, Stemmann O (2014) PP2A delays APC/C-dependent degradation of separase-associated but not free securin. EMBO J 33(10):1134–1147. doi:10.1002/embj.201488098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heroes E, Lesage B, Gornemann J, Beullens M, Van Meervelt L, Bollen M (2013) The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J 280(2):584–595. doi:10.1111/j.1742-4658.2012.08547.x

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann I, Clarke PR, Marcote MJ, Karsenti E, Draetta G (1993) Phosphorylation and activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J 12(1):53–63

    Google Scholar 

  • Hombauer H, Weismann D, Mudrak I, Stanzel C, Fellner T, Lackner DH, Ogris E (2007) Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol 5(6):e155. doi:10.1371/journal.pbio.0050155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hontelez S, van Kruijsbergen I, Georgiou G, van Heeringen SJ, Bogdanovic O, Lister R, Veenstra GJ (2015) Embryonic transcription is controlled by maternally defined chromatin state. Nat Commun 6:10148. doi:10.1038/ncomms10148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu JY, Reimann JD, Sorensen CS, Lukas J, Jackson PK (2002) E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat Cell Biol 4(5):358–366. doi:10.1038/ncb785

    Article  CAS  PubMed  Google Scholar 

  • Huang FL, Glinsmann WH (1976) Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur J Biochem 70(2):419–426

    Article  CAS  PubMed  Google Scholar 

  • Ikegami R, Rivera-Bennetts AK, Brooker DL, Yager TD (1997) Effect of inhibitors of DNA replication on early zebrafish embryos: evidence for coordinate activation of multiple intrinsic cell-cycle checkpoints at the mid-blastula transition. Zygote 5(2):153–175

    Article  CAS  PubMed  Google Scholar 

  • Inoue D, Ohe M, Kanemori Y, Nobui T, Sagata N (2007) A direct link of the Mos-MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs. Nature 446(7139):1100–1104. doi:10.1038/nature05688

    Article  CAS  PubMed  Google Scholar 

  • Inoue D, Sagata N (2005) The Polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of Xenopus eggs. EMBO J 24(5):1057–1067. doi:10.1038/sj.emboj.7600567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irniger S, Piatti S, Michaelis C, Nasmyth K (1995) Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81(2):269–278

    Article  CAS  PubMed  Google Scholar 

  • Isoda M, Kanemori Y, Nakajo N, Uchida S, Yamashita K, Ueno H, Sagata N (2009) The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCF beta-TrCP-dependent degradation for cell cycle arrest. Mol Biol Cell 20(8):2186–2195. doi:10.1091/mbc.E09-01-0008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isoda M, Sako K, Suzuki K, Nishino K, Nakajo N, Ohe M, Ezaki T, Kanemori Y, Inoue D, Ueno H, Sagata N (2011) Dynamic regulation of Emi2 by Emi2-bound Cdk1/Plk1/CK1 and PP2A-B56 in meiotic arrest of Xenopus eggs. Dev Cell 21(3):506–519. doi:10.1016/j.devcel.2011.06.029

    Article  CAS  PubMed  Google Scholar 

  • Janssens V, Longin S, Goris J (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 33(3):113–121. doi:10.1016/j.tibs.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Williamson A, Banerjee S, Philipp I, Rape M (2008) Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133(4):653–665. doi:10.1016/j.cell.2008.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junttila MR, Puustinen P, Niemela M, Ahola R, Arnold H, Bottzauw T, Ala-aho R, Nielsen C, Ivaska J, Taya Y, Lu SL, Lin S, Chan EK, Wang XJ, Grenman R, Kast J, Kallunki T, Sears R, Kahari VM, Westermarck J (2007) CIP2A inhibits PP2A in human malignancies. Cell 130(1):51–62. doi:10.1016/j.cell.2007.04.044

    Article  CAS  PubMed  Google Scholar 

  • Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119(2):447–456

    CAS  PubMed  Google Scholar 

  • Kelly A, Wickliffe KE, Song L, Fedrigo I, Rape M (2014) Ubiquitin chain elongation requires E3-dependent tracking of the emerging conjugate. Mol Cell 56(2):232–245. doi:10.1016/j.molcel.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Li C, Maller JL (1999) A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis. Dev Biol 212(2):381–391. doi:10.1006/dbio.1999.9361

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Holland AJ, Lan W, Cleveland DW (2010) Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142(3):444–455. doi:10.1016/j.cell.2010.06.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimelman D, Kirschner M, Scherson T (1987) The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48(3):399–407

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310. doi:10.1002/aja.1002030302

    Article  CAS  PubMed  Google Scholar 

  • King RW, Peters JM, Tugendreich S, Rolfe M, Hieter P, Kirschner MW (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81(2):279–288

    Article  CAS  PubMed  Google Scholar 

  • Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441(7089):46–52. doi:10.1038/nature04663

    Article  CAS  PubMed  Google Scholar 

  • Kobayaski M, Kato K, Sato S (1975) Multiple molecular forms of phosphoprotein phosphatase. III. Phosphorylase phosphatase and phosphohistone phosphatase of rabbit liver. Biochim Biophys Acta 377(2):343–355

    Article  CAS  PubMed  Google Scholar 

  • Kraft C, Herzog F, Gieffers C, Mechtler K, Hagting A, Pines J, Peters JM (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J 22(24):6598–6609. doi:10.1093/emboj/cdg627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer ER, Scheuringer N, Podtelejnikov AV, Mann M, Peters JM (2000) Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell 11(5):1555–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubiak JZ, Ciemerych MA (2001) Cell cycle regulation in early mouse embryos. Novartis Found Symp 237:79–89, discussion 89–99

    Article  CAS  PubMed  Google Scholar 

  • Kufer TA, Sillje HH, Korner R, Gruss OJ, Meraldi P, Nigg EA (2002) Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 158(4):617–623. doi:10.1083/jcb.200204155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai A, Guo Z, Emami KH, Wang SX, Dunphy WG (1998) The Xenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts. J Cell Biol 142(6):1559–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon YG, Lee SY, Choi Y, Greengard P, Nairn AC (1997) Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc Natl Acad Sci U S A 94(6):2168–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labit H, Fujimitsu K, Bayin NS, Takaki T, Gannon J, Yamano H (2012) Dephosphorylation of Cdc20 is required for its C-box-dependent activation of the APC/C. EMBO J 31(15):3351–3362. doi:10.1038/emboj.2012.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laine A, Sihto H, Come C, Rosenfeldt MT, Zwolinska A, Niemela M, Khanna A, Chan EK, Kahari VM, Kellokumpu-Lehtinen PL, Sansom OJ, Evan GI, Junttila MR, Ryan KM, Marine JC, Joensuu H, Westermarck J (2013) Senescence sensitivity of breast cancer cells is defined by positive feedback loop between CIP2A and E2F1. Cancer Discov 3(2):182–197. doi:10.1158/2159-8290.CD-12-0292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22(22):R966–R980. doi:10.1016/j.cub.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  • Leach C, Shenolikar S, Brautigan DL (2003) Phosphorylation of phosphatase inhibitor-2 at centrosomes during mitosis. J Biol Chem 278(28):26015–26020. doi:10.1074/jbc.M300782200

    Article  CAS  PubMed  Google Scholar 

  • Lee G, White LS, Hurov KE, Stappenbeck TS, Piwnica-Worms H (2009) Response of small intestinal epithelial cells to acute disruption of cell division through CDC25 deletion. Proc Natl Acad Sci U S A 106(12):4701–4706. doi:10.1073/pnas.0900751106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Guo H, Damuni Z (1995) Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochemistry 34(6):1988–1996

    Article  CAS  PubMed  Google Scholar 

  • Li M, Stefansson B, Wang W, Schaefer EM, Brautigan DL (2006) Phosphorylation of the Pro-X-Thr-Pro site in phosphatase inhibitor-2 by cyclin-dependent protein kinase during M-phase of the cell cycle. Cell Signal 18(8):1318–1326. doi:10.1016/j.cellsig.2005.10.020

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Vleugel M, Backer CB, Hori T, Fukagawa T, Cheeseman IM, Lampson MA (2010) Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 188(6):809–820. doi:10.1083/jcb.201001006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Maller JL (2005) Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr Biol 15(16):1458–1468. doi:10.1016/j.cub.2005.07.030

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Yang X, Takihara Y, Knoetgen H, Kessel M (2004) The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions. Nature 427(6976):749–753. doi:10.1038/nature02305

    Article  CAS  PubMed  Google Scholar 

  • Machida YJ, Dutta A (2007) The APC/C inhibitor, Emi1, is essential for prevention of rereplication. Genes Dev 21(2):184–194. doi:10.1101/gad.1495007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacQueen HA, Johnson MH (1983) The fifth cell cycle of the mouse embryo is longer for smaller cells than for larger cells. J Embryol Exp Morphol 77:297–308

    CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630–641. doi:10.1016/j.tibs.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  • Manchado E, Guillamot M, de Carcer G, Eguren M, Trickey M, Garcia-Higuera I, Moreno S, Yamano H, Canamero M, Malumbres M (2010) Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55alpha, delta phosphatase. Cancer Cell 18(6):641–654. doi:10.1016/j.ccr.2010.10.028

    Article  CAS  PubMed  Google Scholar 

  • Margolis SS, Perry JA, Forester CM, Nutt LK, Guo Y, Jardim MJ, Thomenius MJ, Freel CD, Darbandi R, Ahn JH, Arroyo JD, Wang XF, Shenolikar S, Nairn AC, Dunphy WG, Hahn WC, Virshup DM, Kornbluth S (2006a) Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127(4):759–773. doi:10.1016/j.cell.2006.10.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolis SS, Perry JA, Weitzel DH, Freel CD, Yoshida M, Haystead TA, Kornbluth S (2006b) A role for PP1 in the Cdc2/Cyclin B-mediated positive feedback activation of Cdc25. Mol Biol Cell 17(4):1779–1789. doi:10.1091/mbc.E05-08-0751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolis SS, Walsh S, Weiser DC, Yoshida M, Shenolikar S, Kornbluth S (2003) PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. EMBO J 22(21):5734–5745. doi:10.1093/emboj/cdg545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E, Saya H (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278(51):51786–51795. doi:10.1074/jbc.M306275200

    Article  CAS  PubMed  Google Scholar 

  • Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177(2):129–145. doi:10.1002/jez.1401770202

    Article  CAS  PubMed  Google Scholar 

  • Masui Y, Wang P (1998) Cell cycle transition in early embryonic development of Xenopus laevis. Biol Cell 90(8):537–548

    Article  CAS  PubMed  Google Scholar 

  • Mayer W, Smith A, Fundele R, Haaf T (2000) Spatial separation of parental genomes in preimplantation mouse embryos. J Cell Biol 148(4):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer-Jaekel RE, Ohkura H, Ferrigno P, Andjelkovic N, Shiomi K, Uemura T, Glover DM, Hemmings BA (1994) Drosophila mutants in the 55 kDa regulatory subunit of protein phosphatase 2A show strongly reduced ability to dephosphorylate substrates of p34cdc2. J Cell Sci 107(Pt 9):2609–2616

    CAS  PubMed  Google Scholar 

  • McCright B, Virshup DM (1995) Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem 270(44):26123–26128

    Article  CAS  PubMed  Google Scholar 

  • McLay DW, Clarke HJ (2003) Remodelling the paternal chromatin at fertilization in mammals. Reproduction 125(5):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez R, Richter JD (2001) Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2(7):521–529. doi:10.1038/35080081

    Article  CAS  PubMed  Google Scholar 

  • Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD (2000) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404(6775):302–307. doi:10.1038/35005126

    Article  CAS  PubMed  Google Scholar 

  • Mochida S (2014) Regulation of alpha-endosulfine, an inhibitor of protein phosphatase 2A, by multisite phosphorylation. FEBS J 281:1159–1169. doi:10.1111/febs.12685

    Article  CAS  PubMed  Google Scholar 

  • Mochida S, Ikeo S, Gannon J, Hunt T (2009) Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. EMBO J 28(18):2777–2785. doi:10.1038/emboj.2009.238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida S, Maslen SL, Skehel M, Hunt T (2010) Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science 330(6011):1670–1673. doi:10.1126/science.1195689

    Article  CAS  PubMed  Google Scholar 

  • Moshe Y, Boulaire J, Pagano M, Hershko A (2004) Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc Natl Acad Sci U S A 101(21):7937–7942. doi:10.1073/pnas.0402442101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller PR, Coleman TR, Dunphy WG (1995) Cell cycle regulation of a Xenopus Wee1-like kinase. Mol Biol Cell 6(1):119–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami MS, Copeland TD, Vande Woude GF (1999) Mos positively regulates Xe-Wee1 to lengthen the first mitotic cell cycle of Xenopus. Genes Dev 13(5):620–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami MS, Vande Woude GF (1998) Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-wee1 and Mos. Development 125(2):237–248

    CAS  PubMed  Google Scholar 

  • Musacchio A (2011) Spindle assembly checkpoint: the third decade. Philos Trans R Soc Lond B Biol Sci 366(1584):3595–3604. doi:10.1098/rstb.2011.0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8(5):379–393. doi:10.1038/nrm2163

    Article  CAS  PubMed  Google Scholar 

  • Nakajo N, Yoshitome S, Iwashita J, Iida M, Uto K, Ueno S, Okamoto K, Sagata N (2000) Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev 14(3):328–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DA, Krucher NA, Ludlow JW (1997) High molecular weight protein phosphatase type 1 dephosphorylates the retinoblastoma protein. J Biol Chem 272(7):4528–4535

    Article  CAS  PubMed  Google Scholar 

  • Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, Mao H, Chang JS, Galietta A, Uttam A, Roy DC, Valtieri M, Bruner-Klisovic R, Caligiuri MA, Bloomfield CD, Marcucci G, Perrotti D (2005) The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 8(5):355–368. doi:10.1016/j.ccr.2005.10.015

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30(3):675–686

    Article  CAS  PubMed  Google Scholar 

  • Newport JW, Kirschner MW (1984) Regulation of the cell cycle during early Xenopus development. Cell 37(3):731–742

    Article  CAS  PubMed  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    Article  CAS  PubMed  Google Scholar 

  • Nijenhuis W, Vallardi G, Teixeira A, Kops GJ, Saurin AT (2014) Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol 16(12):1257–1264. doi:10.1038/ncb3065

    Article  CAS  PubMed  Google Scholar 

  • Nishitani H, Lygerou Z (2002) Control of DNA replication licensing in a cell cycle. Genes Cells 7(6):523–534

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa M, Furuno N, Okazaki K, Tanaka H, Ogawa Y, Sagata N (1993) Degradation of Mos by the N-terminal proline (Pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: possible significance of natural selection for Pro2 in Mos. EMBO J 12(10):4021–4027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishizawa M, Okazaki K, Furuno N, Watanabe N, Sagata N (1992) The ‘second-codon rule’ and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes. EMBO J 11(7):2433–2446

    Google Scholar 

  • Nurse P, Thuriaux P (1980) Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics 96(3):627–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsumi K, Koyanagi A, Yamamoto TM, Gotoh T, Kishimoto T (2004) Emi1-mediated M-phase arrest in Xenopus eggs is distinct from cytostatic factor arrest. Proc Natl Acad Sci U S A 101(34):12531–12536. doi:10.1073/pnas.0405300101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura E, Morita A, Wakai M, Mochida S, Hara M, Kishimoto T (2014) Cyclin B-Cdk1 inhibits protein phosphatase PP2A-B55 via a Greatwall kinase-independent mechanism. J Cell Biol 204(6):881–889. doi:10.1083/jcb.201307160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3. doi:10.1126/scisignal.2000475

    Article  PubMed  CAS  Google Scholar 

  • Oskarsson M, McClements WL, Blair DG, Maizel JV, Vande Woude GF (1980) Properties of a normal mouse cell DNA sequence (sarc) homologous to the src sequence of Moloney sarcoma virus. Science 207(4436):1222–1224

    Article  CAS  PubMed  Google Scholar 

  • Paules RS, Buccione R, Moschel RC, Vande Woude GF, Eppig JJ (1989) Mouse Mos protooncogene product is present and functions during oogenesis. Proc Natl Acad Sci U S A 86(14):5395–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng CY, Graves PR, Ogg S, Thoma RS, Byrnes MJ 3rd, Wu Z, Stephenson MT, Piwnica-Worms H (1998) C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ 9(3):197–208

    CAS  PubMed  Google Scholar 

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277(5331):1501–1505

    Article  CAS  PubMed  Google Scholar 

  • Pfleger CM, Kirschner MW (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14(6):655–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Posch M, Khoudoli GA, Swift S, King EM, Deluca JG, Swedlow JR (2010) Sds22 regulates aurora B activity and microtubule-kinetochore interactions at mitosis. J Cell Biol 191(1):61–74. doi:10.1083/jcb.200912046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puntoni F, Villa-Moruzzi E (1995) Phosphorylation of the inhibitor-2 of protein phosphatase-1 by cdc2-cyclin B and GSK3. Biochem Biophys Res Commun 207(2):732–739

    Article  CAS  PubMed  Google Scholar 

  • Qian J, Lesage B, Beullens M, Van Eynde A, Bollen M (2011) PP1/Repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting. Curr Biol 21(9):766–773. doi:10.1016/j.cub.2011.03.047

    Article  CAS  PubMed  Google Scholar 

  • Qian YW, Erikson E, Li C, Maller JL (1998) Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol Cell Biol 18(7):4262–4271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauh NR, Schmidt A, Bormann J, Nigg EA, Mayer TU (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437(7061):1048–1052. doi:10.1038/nature04093

    Article  CAS  PubMed  Google Scholar 

  • Rodman TC, Pruslin FH, Hoffmann HP, Allfrey VG (1981) Turnover of basic chromosomal proteins in fertilized eggs: a cytoimmunochemical study of events in vivo. J Cell Biol 90(2):351–361

    Article  CAS  PubMed  Google Scholar 

  • Roy J, Cyert MS (2009) Cracking the phosphatase code: docking interactions determine substrate specificity. Sci Signal 2(100):re9. doi:10.1126/scisignal.2100re9

    Article  PubMed  Google Scholar 

  • Rudner AD, Murray AW (2000) Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J Cell Biol 149(7):1377–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruediger R, Van Wart Hood JE, Mumby M, Walter G (1991) Constant expression and activity of protein phosphatase 2A in synchronized cells. Mol Cell Biol 11(8):4282–4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell P, Nurse P (1986) cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45(1):145–153

    Article  CAS  PubMed  Google Scholar 

  • Russo AA, Jeffrey PD, Pavletich NP (1996) Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3(8):696–700

    Article  CAS  PubMed  Google Scholar 

  • Sagata N, Oskarsson M, Copeland T, Brumbaugh J, Vande Woude GF (1988) Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335(6190):519–525. doi:10.1038/335519a0

    Article  CAS  PubMed  Google Scholar 

  • Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277(5331):1497–1501

    Article  CAS  PubMed  Google Scholar 

  • Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K, Caceres JF, Dubus P, Malumbres M, Barbacid M (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448(7155):811–815. doi:10.1038/nature06046

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182. doi:10.1006/dbio.2001.0501

    Article  CAS  PubMed  Google Scholar 

  • Santos SD, Wollman R, Meyer T, Ferrell JE Jr (2012) Spatial positive feedback at the onset of mitosis. Cell 149(7):1500–1513. doi:10.1016/j.cell.2012.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Shima H, Kitagawa Y, Irino S, Sugimura T, Nagao M (1990) Identification of members of the protein phosphatase 1 gene family in the rat and enhanced expression of protein phosphatase 1 alpha gene in rat hepatocellular carcinomas. Jpn J Cancer Res 81(12):1272–1280

    Article  CAS  PubMed  Google Scholar 

  • Satinover DL, Leach CA, Stukenberg PT, Brautigan DL (2004) Activation of Aurora-A kinase by protein phosphatase inhibitor-2, a bifunctional signaling protein. Proc Natl Acad Sci U S A 101(23):8625–8630. doi:10.1073/pnas.0402966101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Duncan PI, Rauh NR, Sauer G, Fry AM, Nigg EA, Mayer TU (2005) Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev 19(4):502–513. doi:10.1101/gad.320705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz MH, Held M, Janssens V, Hutchins JR, Hudecz O, Ivanova E, Goris J, Trinkle-Mulcahy L, Lamond AI, Poser I, Hyman AA, Mechtler K, Peters JM, Gerlich DW (2010) Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells. Nat Cell Biol 12(9):886–893. doi:10.1038/ncb2092

    Article  CAS  PubMed  Google Scholar 

  • Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V (2013) The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 280(2):644–661. doi:10.1111/j.1742-4658.2012.08579.x

    Article  CAS  PubMed  Google Scholar 

  • Sheng J, Kumagai A, Dunphy WG, Varshavsky A (2002) Dissection of c-MOS degron. EMBO J 21(22):6061–6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139(3):468–484. doi:10.1016/j.cell.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  • Shima H, Hatano Y, Chun YS, Sugimura T, Zhang Z, Lee EY, Nagao M (1993) Identification of PP1 catalytic subunit isotypes PP1 gamma 1, PP1 delta and PP1 alpha in various rat tissues. Biochem Biophys Res Commun 192(3):1289–1296

    Article  CAS  PubMed  Google Scholar 

  • Shimura T, Toyoshima M, Taga M, Shiraishi K, Uematsu N, Inoue M, Niwa O (2002) The novel surveillance mechanism of the Trp53-dependent s-phase checkpoint ensures chromosome damage repair and preimplantation-stage development of mouse embryos fertilized with x-irradiated sperm. Radiat Res 158(6):735–742

    Article  CAS  PubMed  Google Scholar 

  • Shindo M, Nakano H, Kuroyanagi H, Shirasawa T, Mihara M, Gilbert DJ, Jenkins NA, Copeland NG, Yagita H, Okumura K (1998) cDNA cloning, expression, subcellular localization, and chromosomal assignment of mammalian aurora homologues, aurora-related kinase (ARK) 1 and 2. Biochem Biophys Res Commun 244(1):285–292. doi:10.1006/bbrc.1998.8250

    Article  CAS  PubMed  Google Scholar 

  • Shoji S, Yoshida N, Amanai M, Ohgishi M, Fukui T, Fujimoto S, Nakano Y, Kajikawa E, Perry AC (2006) Mammalian Emi2 mediates cytostatic arrest and transduces the signal for meiotic exit via Cdc20. EMBO J 25(4):834–845. doi:10.1038/sj.emboj.7600953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shteinberg M, Protopopov Y, Listovsky T, Brandeis M, Hershko A (1999) Phosphorylation of the cyclosome is required for its stimulation by Fizzy/cdc20. Biochem Biophys Res Commun 260(1):193–198. doi:10.1006/bbrc.1999.0884

    Article  CAS  PubMed  Google Scholar 

  • Sikora-Polaczek M, Hupalowska A, Polanski Z, Kubiak JZ, Ciemerych MA (2006) The first mitosis of the mouse embryo is prolonged by transitional metaphase arrest. Biol Reprod 74(4):734–743. doi:10.1095/biolreprod.105.047092

    Article  CAS  PubMed  Google Scholar 

  • Stanevich V, Jiang L, Satyshur KA, Li Y, Jeffrey PD, Li Z, Menden P, Semmelhack MF, Xing Y (2011) The structural basis for tight control of PP2A methylation and function by LCMT-1. Mol Cell 41(3):331–342. doi:10.1016/j.molcel.2010.12.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21(54):8320–8333. doi:10.1038/sj.onc.1206015

    Article  CAS  PubMed  Google Scholar 

  • Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD (1999) Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 4(6):1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Stebbins-Boaz B, Hake LE, Richter JD (1996) CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J 15(10):2582–2592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steen RL, Martins SB, Tasken K, Collas P (2000) Recruitment of protein phosphatase 1 to the nuclear envelope by A-kinase anchoring protein AKAP149 is a prerequisite for nuclear lamina assembly. J Cell Biol 150(6):1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, Hershko A (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6(2):185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suijkerbuijk SJ, Vleugel M, Teixeira A, Kops GJ (2012) Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 23(4):745–755. doi:10.1016/j.devcel.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  • Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136(18):3033–3042. doi:10.1242/dev.033183

    Article  CAS  PubMed  Google Scholar 

  • Tassan JP, Schultz SJ, Bartek J, Nigg EA (1994) Cell cycle analysis of the activity, subcellular localization, and subunit composition of human CAK (CDK-activating kinase). J Cell Biol 127(2):467–478

    Article  CAS  PubMed  Google Scholar 

  • Thompson EM, Legouy E, Renard JP (1998) Mouse embryos do not wait for the MBT: chromatin and RNA polymerase remodeling in genome activation at the onset of development. Dev Genet 22(1):31–42. doi:10.1002/(sici)1520-6408(1998)22:1<31::aid-dvg4>3.0.co;2-8

    Article  CAS  PubMed  Google Scholar 

  • Thompson LJ, Bollen M, Fields AP (1997) Identification of protein phosphatase 1 as a mitotic lamin phosphatase. J Biol Chem 272(47):29693–29697

    Article  CAS  PubMed  Google Scholar 

  • Tischer T, Hormanseder E, Mayer TU (2012) The APC/C inhibitor XErp1/Emi2 is essential for Xenopus early embryonic divisions. Science 338(6106):520–524. doi:10.1126/science.1228394

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima-Morimoto F, Taniguchi E, Nishida E (2002) Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep 3(4):341–348. doi:10.1093/embo-reports/kvf069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trunnell NB, Poon AC, Kim SY, Ferrell JE Jr (2011) Ultrasensitivity in the Regulation of Cdc25C by Cdk1. Mol Cell 41(3):263–274. doi:10.1016/j.molcel.2011.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai TY, Theriot JA, Ferrell JE Jr (2014) Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos. PLoS Biol 12(2):e1001788. doi:10.1371/journal.pbio.1001788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tung JJ, Hansen DV, Ban KH, Loktev AV, Summers MK, Adler JR 3rd, Jackson PK (2005) A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proc Natl Acad Sci U S A 102(12):4318–4323. doi:10.1073/pnas.0501108102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubbels GA, Hara K, Koster CH, Kirschner MW (1983) Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs. J Embryol Exp Morphol 77:15–37

    CAS  PubMed  Google Scholar 

  • Varmuza S, Prideaux V, Kothary R, Rossant J (1988) Polytene chromosomes in mouse trophoblast giant cells. Development 102(1):127–134

    CAS  PubMed  Google Scholar 

  • Vigneron S, Brioudes E, Burgess A, Labbe JC, Lorca T, Castro A (2009) Greatwall maintains mitosis through regulation of PP2A. EMBO J 28(18):2786–2793. doi:10.1038/emboj.2009.228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigneron S, Gharbi-Ayachi A, Raymond AA, Burgess A, Labbe JC, Labesse G, Monsarrat B, Lorca T, Castro A (2011) Characterization of the mechanisms controlling Greatwall activity. Mol Cell Biol 31(11):2262–2275. doi:10.1128/MCB.00753-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinod PK, Zhou X, Zhang T, Mayer TU, Novak B (2013) The role of APC/C inhibitor Emi2/XErp1 in oscillatory dynamics of early embryonic cell cycles. Biophys Chem 177–178:1–6. doi:10.1016/j.bpc.2013.03.002

    Article  PubMed  CAS  Google Scholar 

  • Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33(5):537–545. doi:10.1016/j.molcel.2009.02.015

    Article  CAS  PubMed  Google Scholar 

  • Virsolvy-Vergine A, Leray H, Kuroki S, Lupo B, Dufour M, Bataille D (1992) Endosulfine, an endogenous peptidic ligand for the sulfonylurea receptor: purification and partial characterization from ovine brain. Proc Natl Acad Sci U S A 89(14):6629–6633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visintin R, Prinz S, Amon A (1997) CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278(5337):460–463

    Article  CAS  PubMed  Google Scholar 

  • Vleugel M, Hoogendoorn E, Snel B, Kops GJ (2012) Evolution and function of the mitotic checkpoint. Dev Cell 23(2):239–250. doi:10.1016/j.devcel.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  • Walter SA, Guadagno SN, Ferrell JE Jr (2000) Activation of Wee1 by p42 MAPK in vitro and in cycling xenopus egg extracts. Mol Biol Cell 11(3):887–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Stukenberg PT, Brautigan DL (2008) Phosphatase inhibitor-2 balances protein phosphatase 1 and aurora B kinase for chromosome segregation and cytokinesis in human retinal epithelial cells. Mol Biol Cell 19(11):4852–4862. doi:10.1091/mbc.E08-05-0460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Multi S, Yang CR, Ma J, Zhang QH, Wang ZB, Li M, Wei L, Ge ZJ, Zhang CH, Ouyang YC, Hou Y, Schatten H, Sun QY (2011) Spindle assembly checkpoint regulates mitotic cell cycle progression during preimplantation embryo development. PLoS One 6(6):e21557. doi:10.1371/journal.pone.0021557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White-Cooper H, Carmena M, Gonzalez C, Glover DM (1996) Mutations in new cell cycle genes that fail to complement a multiply mutant third chromosome of Drosophila. Genetics 144(3):1097–1111

    Article  CAS  PubMed  Google Scholar 

  • Williams BC, Filter JJ, Blake-Hodek KA, Wadzinski BE, Fuda NJ, Shalloway D, Goldberg ML (2014) Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers. eLife 3:e01695. doi:10.7554/eLife.01695

    PubMed  PubMed Central  Google Scholar 

  • Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290(5500):2309–2312. doi:10.1126/science.290.5500.2309

    Article  CAS  PubMed  Google Scholar 

  • Wu JQ, Guo JY, Tang W, Yang CS, Freel CD, Chen C, Nairn AC, Kornbluth S (2009) PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nat Cell Biol 11(5):644–651. doi:10.1038/ncb1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Guo Y, Yamada A, Perry JA, Wang MZ, Araki M, Freel CD, Tung JJ, Tang W, Margolis SS, Jackson PK, Yamano H, Asano M, Kornbluth S (2007) A role for Cdc2- and PP2A-mediated regulation of Emi2 in the maintenance of CSF arrest. Curr Biol 17(3):213–224. doi:10.1016/j.cub.2006.12.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Virshup DM, Lee SH (2014) B56-PP2A regulates motor dynamics for mitotic chromosome alignment. J Cell Sci 127(Pt 21):4567–4573. doi:10.1242/jcs.154609

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Ferrell JE Jr (2013) The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat Cell Biol 15(5):519–525. doi:10.1038/ncb2737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S (1998) Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev 12(14):2131–2143

    Google Scholar 

  • Yang VS, Carter SA, Hyland SJ, Tachibana-Konwalski K, Laskey RA, Gonzalez MA (2011) Geminin escapes degradation in G1 of mouse pluripotent cells and mediates the expression of Oct4, Sox2, and Nanog. Curr Biol 21(8):692–699. doi:10.1016/j.cub.2011.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang VS, Carter SA, Ng Y, Hyland SJ, Tachibana-Konwalski K, Fisher RA, Sebire NJ, Seckl MJ, Pedersen RA, Laskey RA, Gonzalez MA (2012) Distinct activities of the anaphase-promoting complex/cyclosome (APC/C) in mouse embryonic cells. Cell Cycle 11(5):846–855. doi:10.4161/cc.11.5.19251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Zhao Y, Li Z, Galas S, Goldberg ML (2006) Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts. Mol Cell 22(1):83–91. doi:10.1016/j.molcel.2006.02.022

    Article  CAS  PubMed  Google Scholar 

  • Zachariae W, Schwab M, Nasmyth K, Seufert W (1998) Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282(5394):1721–1724

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Forbes KC, Wu Z, Moreno S, Piwnica-Worms H, Enoch T (1998) Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395(6701):507–510. doi:10.1038/26766

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Haccard O, Wang R, Yu J, Kuang J, Jessus C, Goldberg ML (2008) Roles of Greatwall kinase in the regulation of cdc25 phosphatase. Mol Biol Cell 19(4):1317–1327. doi:10.1091/mbc.E07-11-1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologise to all colleagues whose work could not be cited because of space limitations. We thank the members of the Mayer lab for helpful comments on the chapter. This work was supported by funding from the Konstanz Research School Chemical Biology (KoRS-CB) and the Collaborative Research Center 969 ‘Chemical and Biological Principles of Cellular Proteostasis’ of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas U. Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heim, A., Rymarczyk, B., Mayer, T.U. (2017). Regulation of Cell Division. In: Pelegri, F., Danilchik, M., Sutherland, A. (eds) Vertebrate Development. Advances in Experimental Medicine and Biology, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-319-46095-6_3

Download citation

Publish with us

Policies and ethics