Skip to main content

Stimulation of the Sigma-1 Receptor and the Effects on Neurogenesis and Depressive Behaviors in Mice

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 964))

Abstract

Sigma-1 receptor (Sig-1R) is molecular chaperone regulating calcium efflux from the neuronal endoplasmic reticulum to mitochondria. Recent studies show that Sig-1R stimulation antagonizes depressive-like behaviors in animal models, but molecular mechanisms underlying this effect remain unclear. Here, we focus on the effects of Sig-1R ligands on hippocampal neurogenesis and depressive-like behaviors. Sig-1R stimulation also enhances CaMKII /CaMKIV and protein kinase B (Akt) activities in hippocampus. Therefore, we discuss the fundamental roles of Sig-1R, CaMKII /CaMKIV and protein kinase B (Akt) signaling in amelioration of depressive-like behaviors following Sig-1R stimulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Akt:

protein kinase B

BDNF :

brain-derived neurotrophic factor

BrdU:

bromodeoxyuridine

CaMKII :

calcium/calmodulin-dependent protein kinase II

CaMKIV :

calcium/calmodulin-dependent protein kinase IV

CREB:

cAMP-responsive element binding protein

DG:

dentate gyrus

DHEA:

dehydroepiandrosterone

ER/SR:

endoplasmic/sacroplasmic reticulum

ERK:

extracellular signal-regulated kinase

LTP:

long-term potentiation

NMDAR:

N-methyl-D-aspartate receptor

SERCA:

sarcoplasmic/endoplasmic Ca2+-ATPase

Sig-1R:

sigma-1 receptor

SSRIs:

selective serotonin reuptake inhibitors

References

  1. Hanner M, Moebius FF, Flandorfer A et al (1996) Purification, molecular cloning, and expression of the mammalian σ1 binding site. Proc Natl Acad Sci U S A 93:8072–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kekuda R, Prasad PD, Fei YJ et al (1996) Cloning and functional expression of the human type1 sigma receptor (hSigmaR1). Biochem Biophys Res Commun 229:553–558

    Article  CAS  PubMed  Google Scholar 

  3. Seth P, Fei YJ, Li HW et al (1998) Cloning and functional characterization of a σ receptor from rat brain. J Neurochem 70:922–931

    Article  CAS  PubMed  Google Scholar 

  4. Pan YX, Mey J, Xu J et al (1998) Cloning and characterization of a mouse σ1 receptor. J Neurochem 70:2279–2285

    Article  CAS  PubMed  Google Scholar 

  5. Hayashi T, Su TP (2004) Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proc Natl Acad Sci U S A 101:14949–14954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palacios G, Muro A, Vela JM et al (2003) Immnohistochemical localization of the sigma1-receptor in oligodendrocytes in the rat central nervous system. Brain Res 961:92–99

    Article  CAS  PubMed  Google Scholar 

  7. Hayashi T, Maurice T, Su TP (2000) Ca2+ signaling via sigma1-receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration. J Pharmacol Exp Ther 293:788–798

    CAS  PubMed  Google Scholar 

  8. Shioda N, Ishikawa K, Tagashira H et al (2012) Expression of a truncated form of the endoplasmic reticulum chaperone protein, σ1 receptor, promotes mitochondrial energy depletion and apoptosis. J Biol Chem 287:23318–23331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Monnet FP, Debonnel G, Junien JL et al (1990) N-methyl-D- aspartate-induced neuronal activation is selectively modulated by sigma receptors. Eur J Pharmacol 179:441–445

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez-Alvear GM, Werling LL (1994) Regulation of [3H] dopamine release from rat striatal slices by sigma receptor ligands. J Pharmacol Exp Ther 271:212–219

    CAS  PubMed  Google Scholar 

  11. Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(805):809

    Google Scholar 

  12. Boldrini M, Underwood MD, Hen R et al (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34:2376–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28(1562):1571

    Google Scholar 

  14. Cobos EJ, Entrena JM, Nieto FR et al (2008) Pharmacology and therapeutic potential of sigma1 receptor ligands. Curr Neuropharmacol 6:344–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chevallier N, Keller E, Maurice T (2011) Behavioral phenotyping of knockout mice for the sigma-1 (σ1) chaperone protein revealed gender-related anxiety, depressive-like and memory alterations. J Psychopharmacol 25:960–975

    Article  CAS  PubMed  Google Scholar 

  16. Moriguchi S, Yamamoto Y, Ikuno T et al (2011) Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice. J Neurochem 117:879–891

    Article  CAS  PubMed  Google Scholar 

  17. Moriguchi S, Shinoda Y, Yamamoto Y et al (2013) Stimulation of sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice. PLoS ONE 8:e60863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bito H, Deisseroth K, Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca2+ and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203–1214

    Article  CAS  PubMed  Google Scholar 

  19. Shaywitz AL, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  CAS  PubMed  Google Scholar 

  20. West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 3:921–931

    Article  CAS  PubMed  Google Scholar 

  21. Bourtchuladze R, Frenguelli B, Blendy J et al (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    Article  CAS  PubMed  Google Scholar 

  22. Josselyn SA, Shi C, Carlezon WAJ et al (2001) Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci 21:2404–2412

    CAS  PubMed  Google Scholar 

  23. Impey S, Smith DM, Obrietan K et al (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci 1:595–601

    Article  CAS  PubMed  Google Scholar 

  24. Valverde O, Mantamadiotis T, Torrecilla M et al (2004) Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice. Neuropsychopharmacology 29:1122–1133

    Article  CAS  PubMed  Google Scholar 

  25. Maldonado R, Smadja C, Mazzucchelli M et al (1999) Altered emotional and locomotor responses in mice deficient in the transcription factor CREM. Proc Natl Acad Sci U S A 96:14094–14099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barrot M, Olivier JD, Perrotti LI et al (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to stimuli. Proc Natl Acad Sci U S A 99:11435–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohmstede CA, Bland MM, Merrill BM et al (1991) Relationship of genes encoding Ca2+/calmodulin-dependent protein kinase Gr and calpermin: a gene within a page. Proc Natl Acad Sci U S A 88:5784–5788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moriguchi S, Sakagami H, Yabuki Y et al (2015) Stimulation of sigma-1 receptor ameliorates depressive-like behaviors in CaMKIV null mice. Mol Neurobiol 52:1012–1222

    Article  Google Scholar 

  29. Takao K, Tanda K, Nakamura K et al (2010) Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice. PLoS ONE 5:e9460

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shum FW, Ko SW, Lee YS et al (2005) Genetic alteration of anxiety and stress-like behavior in mice lacking CaMKIV. Mol Pain 1:22

    Article  PubMed  PubMed Central  Google Scholar 

  31. Song N, Nakagawa S, Izumi T et al (2012) Involvement of CaMKIV in neurogenic effect with chronic fluoxetine treatment. Int J Neuropsychopharmacol 16:803–812

    Article  PubMed  Google Scholar 

  32. Sabino V, Cottone P, Parylak SL et al (2009) Sigma-1 receptor knockout mice display a depression-like phenotype. Behav Brain Res 198:472–476

    Article  CAS  PubMed  Google Scholar 

  33. Sha S, Qu WJ, Li L et al (2013) Sigma-1 receptor knockout impairs neurogenesis in dentate gyrus of adult hippocampus via down-regulation of NMDA receptors. CNS Neurosci Ther 19:705–713

    Article  CAS  PubMed  Google Scholar 

  34. Sha D, Hong J, Qu WJ et al (2015) Sex-related neurogenesis decrease in hippocampal dentate gyrus with depression-like behaviors in sigma-1 receptor knockout mice. Eur Neuropsychopharmacol 25:1275–1286

    Article  CAS  PubMed  Google Scholar 

  35. Narita N, Hashimoto K, Tomitaka S et al (1996) Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol 307:117–119

    Article  CAS  PubMed  Google Scholar 

  36. Hiemke C, Hӓrtter S (2000) Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85:11–28

    Article  CAS  PubMed  Google Scholar 

  37. Monnet FP, Mahe V, Robel P et al (1995) Neurosteroids, via σ receptors, modulate the [3H] norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci U S A 92:3774–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bergeron R, de Montigny C, Debonnel G (1997) Effect of short-term and long-term treatments with sigma ligands on the N-methyl-D-aspartate response in the CA3 region of the rat dorsal hippocampus. Br J Pharmacol 120:1351–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Debonnel G, Bergeron R, Monnet FP et al (1996) Differential effects of sigma ligands on the N-methyl-D-aspartate response in the CA1and CA3 regions of the dorsal hippocampus: effect of mossy fiber lesioning. Neuroscience 71:977–987

    Article  CAS  PubMed  Google Scholar 

  40. Martina M, Turcotte ME, Halman S et al (2007) The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Philos 578:143–157

    CAS  Google Scholar 

  41. Pabba M, Wong AYC, Ahlskog N et al (2014) NMDA receptor are upregulated and trafficked to the plasma membrane after sigma-1 receptor activation in the rat hippocampus. J Neurosci 34:11325–11338

    Article  PubMed  Google Scholar 

  42. Balasuriya D, Stewart AP, Edwardson JM (2013) The s-1 receptor interacts directly with GluN1 but not GlunN2A in the GlunN1/Glun2A NMDA receptor. J Neurosci 33:18219–18224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maurice T, Urani A, Phan VL et al (2001) The interaction between neuroactive steloids and the sigma1 receptor function: behavioral consequences and therapeutics opportunities. Brain Res Rev 37:116–132

    Article  CAS  PubMed  Google Scholar 

  44. Yoon SY, Roh DH, Seo HS et al (2010) An increase in spinal dehydroepiandrosterone sulfate (DHEAS) enhances NMDA-induced pain via phosphorylation of the NR1 subunit in mice: involvement of the sigma-1 receptor. Neuropharmacology 59:460–467

    Article  CAS  PubMed  Google Scholar 

  45. Sun P, Enslen H, Myung PS et al (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8:2527–2539

    Article  CAS  PubMed  Google Scholar 

  46. Takeuchi Y, Fukunaga K, Miyamoto E (2002) Activation of nuclear Ca2+/calmodulin-dependent protein kinase II and brain-derived neurotrophic factor gene expression by stimulation of dopamine D2 receptor in transfected NG108-15 cells. J Neurochem 82(2):316–328

    Article  CAS  PubMed  Google Scholar 

  47. Irwin RP, Lin SZ, Rogawski MA et al (1994) Steroid potentiation and inhibition of N-methyl-D-aspartate receptor-mediated intracellular Ca2+ response: structure-activity studies. J Pharmacol Exp Ther 271:677–682

    CAS  PubMed  Google Scholar 

  48. Chen L, Miyamoto Y, Furuya K et al (2007) PREGS induces LTP in the hippocampal dentate gyrus of adult rats via the tyrosine phosphorylation of NR2B coupled to ERK/CREB signaling. J Neurophysiol 98:1538–1548

    Article  CAS  PubMed  Google Scholar 

  49. Yamasaki N, Maekawa M, Kobayashi K et al (2008) Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu H, Lu D, Jiang H et al (2008) Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 25:130–139

    Article  PubMed  Google Scholar 

  51. Shioda N, Han F, Morioka M et al (2008) Bis(1-oxy-2-pyridinethiolato)oxovanadium(IV) enhances neurogenesis via phosphatidylinositol 3-kinase/Akt and extracellular signal regulated kinase activation in the hippocampal subgranular zone after mouse focal cerebral ischemia. Neuroscience 155:876–887

    Article  CAS  PubMed  Google Scholar 

  52. Li BS, Ma W, Zhang L et al (2001) Activation of phosphatidylinositol-3 kinase (PI-3 K) and extracellular regulated kinases (Erk1/2) is involved in muscarinic receptor-mediated DNA synthesis in neural progenitor cells. J Neurosci 21:1569–1579

    CAS  PubMed  Google Scholar 

  53. Crossthwaite AJ, Valli H, Williams RJ (2004) Inhibiting Src family tyrosine kinase activity blocks glutamate signaling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurons. J Neurochem 88:1127–1139

    Article  CAS  PubMed  Google Scholar 

  54. Du J, Feng L, Yang F et al (2000) Activity- and Ca2+-dependent modulation of surface expression of brain-derived neurotrophic factor receptors in hippocampal neurons. J Cell Biol 150:1423–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fujimoto M, Hayashi T, Urfer R et al (2012) Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor. Synapse 66:630–639

    Article  CAS  PubMed  Google Scholar 

  56. Hayashi T (2015) Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs. J Pharmacol Sci 127:2–5

    Article  CAS  PubMed  Google Scholar 

  57. Peltier J, O’Neill A, Schaffer DV (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67:1348–1361

    Article  CAS  PubMed  Google Scholar 

  58. Mantamadiotis T, Lemberger T, Bleckmann SC et al (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31:47–54

    Article  CAS  PubMed  Google Scholar 

  59. Shetty AK, Hattiangady B, Shetty GA (2005) Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. GLIA 51:173–186

    Article  PubMed  Google Scholar 

  60. Cao X, Li LP, Wang Q et al (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 19:773–777

    Article  CAS  PubMed  Google Scholar 

  61. Bhuiyan MS, Tagashira H, Shioda N et al (2010) Targeting sigma-1 receptor with fluvoxamine ameliorates pressure-overload-induced hypertrophy and dysfunctions. Expert Opin Ther Targets 14:1009–1022

    Article  CAS  PubMed  Google Scholar 

  62. Tagashira H, Bhuiyan S, Shioda N et al (2010) Sigma1-receptor stimulation with fluvoxamine ameliorates transverse aortic constriction-induced myocardial hypertrophy and dysfunction in mice. Am J Physiol Heart Circ Physiol 299:H1535–H1545

    Article  CAS  PubMed  Google Scholar 

  63. Bhuiyan MS, Tagashira H, Fukunaga K (2010) Dehydroepiandrosterone-mediated stimulation of sigma-1 receptor activates Akt-eNOS signaling in the thoracic aorta of ovariectomized rats with abdominal banding. Cardiovasc Ther 29:219–230

    Article  PubMed  Google Scholar 

  64. Ito K, Hirooka Y, Matsukawa R et al (2012) Decreased brain sigma-1 receptor contributes to the relationship between heart failure and depression. Cardiovasc Res 93:33–40

    Article  CAS  PubMed  Google Scholar 

  65. Ito K, Hirooka Y, Sunagawa K (2013) Brain sigma-1 receptor stimulation improves mental disorder and cardiac function in mice with myocardial infarction. J Cardiovasc Pharmacol 62:222–228

    Article  CAS  PubMed  Google Scholar 

  66. Lenart L, Hodreal J, Hosszu A et al (2016) The role of sigma-1 receptor and brain- derived neurotrophic factor in the development of diabetes and comorbid depression in streptozotocin-induced diabetic rats. Psychopharmacology. doi:10.1007/s00213-016-4209-x

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Fukunaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Fukunaga, K., Moriguchi, S. (2017). Stimulation of the Sigma-1 Receptor and the Effects on Neurogenesis and Depressive Behaviors in Mice. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, vol 964. Springer, Cham. https://doi.org/10.1007/978-3-319-50174-1_14

Download citation

Publish with us

Policies and ethics