Skip to main content

An Object Splitting Model Using Higher-Order Active Contours for Single-Cell Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Abstract

Determining the number and morphology of individual cells on microscopy images is one of the most fundamental steps in quantitative biological image analysis. Cultured cells used in genetic perturbation and drug discovery experiments can pile up and nuclei can touch or even grow on top of each other. Similarly, in tissue sections cell nuclei can be very close and touch each other as well. This makes single cell nuclei detection extremely challenging using current segmentation methods, such as classical edge- and threshold-based methods that can only detect separate objects, and they fail to separate touching ones. The pipeline we present here can segment individual cell nuclei by splitting touching ones. The two-step approach merely based on energy minimization principles using an active contour framework. In a presegmentation phase we use a local region data term with strong edge tracking capability, while in the splitting phase we introduce a higher-order active contour model. This model prefers high curvature contour locations at the opposite side of joint objects grow “cutting arms” that evolve to one another until they split objects. Synthetic and real experiments show the strong segmentation and splitting ability of the proposed pipeline and that it outperforms currently used segmentation models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Extended by the charge conservation principle.

  2. 2.

    Hence the negative sign.

References

  1. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: ICCV, pp. 26–33. IEEE (2003)

    Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  3. Chan, T., Vese, L.: An active contour model without edges. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 141–151. Springer, Heidelberg (1999). doi:10.1007/3-540-48236-9_13

    Chapter  Google Scholar 

  4. Chan, T., Vese, L.: A multiphase level set framework for image segmentation using the Mumford and Shah model. IJCV 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  5. Chang, H., Yang, Q., Parvin, B.: Segmentation of heterogeneous blob objects through voting and level set formulation. Pattern Recogn. Lett. 28(13), 1781–1787 (2007)

    Article  Google Scholar 

  6. Daněk, O., Matula, P., Ortiz-de-Solórzano, C., Muñoz-Barrutia, A., Maška, M., Kozubek, M.: Segmentation of touching cell nuclei using a two-stage graph cut model. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 410–419. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02230-2_42

    Chapter  Google Scholar 

  7. Faugeras, O., Keriven, R.: Variational principles, surface evolution, pdes, level set methods, and the stereo problem. Trans. Img. Proc. 7(3), 336–344 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, Y., Gong, H., Xiong, B., Xu, X., Li, A., Jiang, T., Sun, Q., Wang, S., Luo, Q., Chen, S.: iCut: an integrative cut algorithm enables accurate segmentation of touching cells. Sci. Rep., 5, (2015). Article no. 12089

    Google Scholar 

  9. Jiang, T., Yang, F.: An evolutionary tabu search for cell image segmentation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 32(5), 675–678 (2002)

    Article  MathSciNet  Google Scholar 

  10. Jones, T.R., Carpenter, A., Golland, P.: Voronoi-based segmentation of cells on image manifolds. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 535–543. Springer, Heidelberg (2005). doi:10.1007/11569541_54

    Chapter  Google Scholar 

  11. Kenong, W., Gauthier, D., Levine, M.D.: Live cell image segmentation. IEEE Trans. Biomed. Eng. 42(1), 1–12 (1995)

    Article  Google Scholar 

  12. Kothari, S., Chaudry, Q., Wang, M.D.: Automated cell counting and cluster segmentation using concavity detection and ellipse fitting techniques. In: IEEE ISBI, pp. 795–798. IEEE (2009)

    Google Scholar 

  13. Kumar, S., Ong, S.H., Ranganath, S., Ong, T.C., Chew, F.T.: A rule-based approach for robust clump splitting. Pattern Recogn. 39(6), 1088–1098 (2006)

    Article  MATH  Google Scholar 

  14. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans. Med. Imaging 26(7), 1010–1016 (2007)

    Article  Google Scholar 

  15. Li, G., Liu, T., Nie, J., Guo, L., Chen, J., Zhu, J., Xia, W., Mara, A., Holley, S., Wong, S.: Segmentation of touching cell nuclei using gradient flow tracking. J. Microsc. 231(1), 47–58 (2008)

    Article  MathSciNet  Google Scholar 

  16. Molnar, C., Jermyn, I.H., Kato, Z., Rahkama, V., Östling, P., Mikkonen, P., Pietiäinen, V., Horvath, P.: Accurate morphology preserving segmentation of overlapping cells based on active contours. Sci. Rep. 6, 1–10 (2016). Article no. 32412 EP

    Article  Google Scholar 

  17. Molnar, J., Szucs, A.I., Molnar, C., Horvath, P.: Active contours for selective object segmentation. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9 (2016)

    Google Scholar 

  18. Pinidiyaarachchi, A., Wählby, C.: Seeded watersheds for combined segmentation and tracking of cells. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 336–343. Springer, Heidelberg (2005). doi:10.1007/11553595_41

    Chapter  Google Scholar 

  19. Qi, X., Xing, F., Foran, D.J., Yang, L.: Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. IEEE Trans. Biomed. Eng. 59(3), 754–765 (2012)

    Article  Google Scholar 

  20. Shi, J., Malik, J.: Normalized cuts, image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  21. Smith, K., Li, Y., Piccinini, F., Csucs, G., Balazs, C., Bevilacqua, A., Horvath, P.: CIDRE: an illumination-correction method for optical microscopy. Nature Methods 12(5), 404–406 (2015)

    Article  Google Scholar 

  22. Wienert, S., Heim, D., Saeger, K., Stenzinger, A., Beil, M., Hufnagl, P., Dietel, M., Denkert, C., Klauschen, F.: Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci. Rep. 2, 503 (2012). 22787560

    Article  Google Scholar 

  23. Yang, Q., Parvin, B.: Harmonic cut and regularized centroid transform for localization of subcellular structures. IEEE Trans. Biomed. Eng. 50(4), 469–475 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Horvath .

Editor information

Editors and Affiliations

Appendix

Appendix

The derivation of the Euler-Lagrange equation associated to functional (2) is straightforward albeit long. Here we only provide the result. The notations used in the equations are the following: the point at contour parameter t is designated by position vector \(\mathbf {r}\left( t\right) \). The bound variable of the integrals is denoted by \(\tau \), hence the invariant arc length: \(ds=\left| \dot{\mathbf {r}}\right| d\tau \) (the derivatives of the position vector w.r.t. the contour parameter are denoted by dots: \(\dot{\mathbf {r}},\,\mathbf {\ddot{r}}\ldots \)). The unit tangent and normal vectors of the contour are denoted by \(\mathbf {e},\,\mathbf {n}\), where \(\mathbf {e}=\frac{\dot{\mathbf {r}}}{\left| \dot{\mathbf {r}}\right| }\). Using right handed coordinate system, they are related with \(\mathbf {n}=\mathbf {k}\times \mathbf {e}\), where \(\mathbf {k}\) is the normal of the image plane, hence the contour normals point inward. The (signed) curvature of the contour is given by \(\kappa =\frac{\mathbf {\ddot{r}}\cdot \mathbf {n}}{\left| \mathbf {\dot{r}}\right| ^{2}}\). The unit direction vector between points given by contour parameters t and \(\tau \) is denoted by \(\mathbf {e}_{t\tau }=\frac{\mathbf {r}_{\tau }-\mathbf {r}_{t}}{d_{t\tau }}\), where \(d_{t\tau }=\left| \mathbf {r}_{\tau }-\mathbf {r}_{t}\right| \) is their Euclidean distance. We also use the normal to this direction vector with definition \(\mathbf {n}_{t\tau }=\mathbf {k}\times \mathbf {e}_{t\tau }\). The alignment between contour points is defined by \(a_{t\tau }\doteq \mathbf {n}\left( t\right) \cdot \mathbf {e}_{t\tau }+\mathbf {n}\left( \tau \right) \cdot \mathbf {e}_{\tau t}\) (\(\mathbf {e}_{\tau t}=-\mathbf {e}_{t\tau }\)). \(f,\,g,\,l\) are the appropriately chosen functions of the curvature, alignment and distance respectively, for their derivatives we use prime mark \(f^{\prime },\,f^{\prime \prime }\ldots \) The first and second derivatives of the curvature w.r.t. the arc length are denoted by \(\frac{d\kappa }{ds},\,\frac{d^{2}\kappa }{ds^{2}}\). The curvature and its derivative are scalars. Note that the derivative w.r.t. the arc lenght of any scalar quantity q can be calculated on the planar grid using the formula: \(\left( \nabla q\right) \cdot \mathbf {e}\), where \(\nabla \) is the gradient operator with components being the partial derivatives \(\left( \frac{\partial }{\partial x},\frac{\partial }{\partial y}\right) \) w.r.t. image coordinates \(x,\,y\).

The formula: \(A=\mathbf {e}_{t\tau }\cdot \left( \mathbf {e}\left( t\right) -\mathbf {e}\left( \tau \right) \right) \), \(B=\mathbf {e}_{t\tau }\cdot \left( \mathbf {n}\left( t\right) -\mathbf {n}\left( \tau \right) \right) \),\(C=\left[ \frac{l\left( d_{t\tau }\right) }{d_{t\tau }}-l^{\prime }\left( d_{t\tau }\right) \right] \), \(D=\mathbf {e}_{t\tau }\cdot \mathbf {n}\left( t\right) \), \(E=\mathbf {e}_{t\tau }\cdot \mathbf {e}\left( t\right) \), \(F=\mathbf {n}\left( \tau \right) \cdot \mathbf {e}\left( t\right) \) are introduced to simplify the equation. The Euler-Lagrange equation associated to the half of (2) at point t has the form \(\left| \dot{\mathbf {r}\left( t\right) }\right| Q\mathbf {n}\left( t\right) =\mathbf {0}\), where Q is given by the following sum:

$$\begin{aligned} -\left[ f^{\prime \prime \prime }\left( \frac{d\kappa }{ds}\right) ^{2}+f^{\prime \prime }\frac{d^{2}\kappa }{ds^{2}}\right] \oint g\left( a_{t\tau }\right) l\left( d_{t\tau }\right) f\left( \kappa \left( \tau \right) \right) ds\\ -2f^{\prime \prime }\frac{d\kappa }{ds}\oint g^{\prime }\left( a_{t\tau }\right) l\left( d_{t\tau }\right) \frac{AD}{d_{t\tau }}f\left( \kappa \left( \tau \right) \right) ds\\ +2f^{\prime \prime }\frac{d\kappa }{ds}\kappa \oint g^{\prime }\left( a_{t\tau }\right) l\left( d_{t\tau }\right) Ef\left( \kappa \left( \tau \right) \right) ds\\ +2f^{\prime \prime }\frac{d\kappa }{ds}\oint g\left( a_{t\tau }\right) l^{\prime }\left( d_{t\tau }\right) Ef\left( \kappa \left( \tau \right) \right) ds\\ -f^{\prime }\oint g^{\prime \prime }\left( a_{t\tau }\right) l\left( d_{t\tau }\right) \left[ \frac{\left( B-\kappa \left( t\right) d_{t\tau }\right) E+F}{d_{t\tau }}\right] ^{2}f\left( \kappa \left( \tau \right) \right) ds\\ +f^{\prime }\kappa \oint g^{\prime }\left( a_{t\tau }\right) l\left( d_{t\tau }\right) \frac{AE-2}{d_{t\tau }}f\left( \kappa \left( \tau \right) \right) ds\\ +f^{\prime }\kappa ^{2}\oint g^{\prime }\left( a_{t\tau }\right) l\left( d_{t\tau }\right) Df\left( \kappa \left( \tau \right) \right) ds\\ +f^{\prime }\oint g^{\prime }\left( a_{t\tau }\right) l\left( d_{t\tau }\right) \frac{BD^{2}}{d_{t\tau }^{2}}f\left( \kappa \left( \tau \right) \right) ds\\ -2f^{\prime }\oint g^{\prime }\left( a_{t\tau }\right) \frac{ACDE}{d_{t\tau }}f\left( \kappa \left( \tau \right) \right) ds\\ +2f^{\prime }\kappa \oint g^{\prime }\left( a_{t\tau }\right) CE^{2}f\left( \kappa \left( \tau \right) \right) ds\\ -f^{\prime }\kappa ^{2}\oint g\left( a_{t\tau }\right) l\left( d_{t\tau }\right) f\left( \kappa \left( \tau \right) \right) ds\\ +f^{\prime }\kappa \oint g\left( a_{t\tau }\right) l^{\prime }\left( d_{t\tau }\right) Df\left( \kappa \left( \tau \right) \right) ds\\ -f^{\prime }\oint g\left( a_{t\tau }\right) l^{\prime }\left( d_{t\tau }\right) \frac{D^{2}}{d_{t\tau }}f\left( \kappa \left( \tau \right) \right) ds\\ -f^{\prime }\oint g\left( a_{t\tau }\right) l^{\prime \prime }\left( d_{t\tau }\right) E^{2}f\left( \kappa \left( \tau \right) \right) ds\\ +f\kappa \oint g^{\prime \prime }\left( a_{t\tau }\right) l\left( d_{t\tau }\right) E^{2}f\left( \kappa \left( \tau \right) \right) ds\\ -f\oint g^{\prime \prime }\left( a_{t\tau }\right) l\left( d_{t\tau }\right) \frac{ADE}{d_{t\tau }}f\left( \kappa \left( \tau \right) \right) ds\\ -f\kappa \oint g^{\prime }\left( a_{t\tau }\right) l\left( d_{t\tau }\right) Df\left( \kappa \left( \tau \right) \right) ds\\ -f\oint g^{\prime }\left( a_{t\tau }\right) l\left( d_{t\tau }\right) \frac{D^{2}-AE}{d_{t\tau }}f\left( \kappa \left( \tau \right) \right) ds\\ +f\oint g^{\prime }\left( a_{t\tau }\right) l^{\prime }\left( d_{t\tau }\right) E^{2}f\left( \kappa \left( \tau \right) \right) ds\\ +f\oint g\left( a_{t\tau }\right) \left[ \kappa \left( t\right) l\left( d_{t\tau }\right) +l^{\prime }\left( d_{t\tau }\right) D\right] f\left( \kappa \left( \tau \right) \right) ds.\\ \end{aligned}$$

The factors outside the integrals are calculated at parameter t (i.e. independent of the bound variable). Note that any factor depending only on parameter t, could be brought before the integrals, but would lead more complicated expression.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Molnar, J., Molnar, C., Horvath, P. (2016). An Object Splitting Model Using Higher-Order Active Contours for Single-Cell Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics