Skip to main content

Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape

  • Chapter
  • First Online:
Prokaryotic Cytoskeletons

Part of the book series: Subcellular Biochemistry ((SCBI,volume 84))

Abstract

Caulobacter crescentus, an aquatic Gram-negative α-proteobacterium, is dimorphic, as a result of asymmetric cell divisions that give rise to a free-swimming swarmer daughter cell and a stationary stalked daughter. Cell polarity of vibrioid C. crescentus cells is marked by the presence of a stalk at one end in the stationary form and a polar flagellum in the motile form. Progression through the cell cycle and execution of the associated morphogenetic events are tightly controlled through regulation of the abundance and activity of key proteins. In synergy with the regulation of protein abundance or activity, cytoskeletal elements are key contributors to cell cycle progression through spatial regulation of developmental processes. These include: polarity establishment and maintenance, DNA segregation, cytokinesis, and cell elongation. Cytoskeletal proteins in C. crescentus are additionally required to maintain its rod shape, curvature, and pole morphology. In this chapter, we explore the mechanisms through which cytoskeletal proteins in C. crescentus orchestrate developmental processes by acting as scaffolds for protein recruitment, generating force, and/or restricting or directing the motion of molecular machines. We discuss each cytoskeletal element in turn, beginning with those important for organization of molecules at the cell poles and chromosome segregation, then cytokinesis, and finally cell shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaron M et al (2007) The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol Microbiol 64(4):938–952

    Article  CAS  PubMed  Google Scholar 

  • Ausmees N, Kuhn JR, Jacobs-Wagner C (2003) The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115(6):705–713

    Article  CAS  PubMed  Google Scholar 

  • Banigan EJ et al (2011) Filament depolymerization can explain chromosome pulling during bacterial mitosis. PLoS Comput Biol 7(9):e1002145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry RM et al (2014) Large-scale filament formation inhibits the activity of CTP synthetase. eLife 3:e03638

    PubMed  PubMed Central  Google Scholar 

  • Bartosik AA et al (2009) ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. Microbiol (Reading, England) 155(Pt 4):1080–1092

    Article  CAS  Google Scholar 

  • Beaufay F et al (2015) A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus. EMBO J 34(13):1786–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biteen JS et al (2008) Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5(11):947–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutte CC, Henry JT, Crosson S (2012) ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol 194(1):28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman GR et al (2008) A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134(6):945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman GR et al (2010) CaulobacterPopZ forms a polar subdomain dictating sequential changes in pole composition and function. Mol Microbiol 76(1):173–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman GR et al (2013) Oligomerization and higher-order assembly contribute to sub-cellular localization of a bacterial scaffold. Mol Microbiol 90(4):776–795

    Article  CAS  PubMed  Google Scholar 

  • Briegel A et al (2006) Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Mol Microbiol 62(1):5–14

    Article  CAS  PubMed  Google Scholar 

  • Britos L et al (2011) Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One 6(4):e18179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buske PJ, Levin PA (2013) A flexible C-terminal linker is required for proper FtsZ assembly in vitro and cytokinetic ring formation in vivo. Mol Microbiol 89(2):249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabeen MT et al (2009) Bacterial cell curvature through mechanical control of cell growth. EMBO J 28:1–12

    Article  CAS  Google Scholar 

  • Cabeen MT et al (2010) Mutations in the Lipopolysaccharide biosynthesis pathway interfere with crescentin-mediated cell curvature in Caulobacter crescentus. J Bacteriol 192(13):3368–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabeen MT, Herrmann H, Jacobs-Wagner C (2011) The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function. Cytoskeleton 68(4):205–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carcamo WC et al (2011) Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS One 6(12):e29690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charbon G, Cabeen MT, Jacobs-Wagner C (2009) Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Genes Dev 23(9):1131–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis PD, Brun YV (2010) Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev MMBR 74(1):13–41

    Article  CAS  PubMed  Google Scholar 

  • Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113(6):767–776

    Article  CAS  PubMed  Google Scholar 

  • Din N, Quardokus EM, Sackett MJ (1998) Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol Microbiol 27(5):1051–1063

    Article  CAS  PubMed  Google Scholar 

  • Divakaruni AV et al (2007) The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes. Mol Microbiol 66(1):174–188

    Article  CAS  PubMed  Google Scholar 

  • Donovan C et al (2010) Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum. J Bacteriol 192(13):3441–3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duman R et al (2013) Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc Natl Acad Sci 110(48):E4601–E4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dye NA et al (2011) Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter. Mol Microbiol 81(2):368–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easter J, Gober JW (2002) ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol Cell 10(2):472–434

    Article  Google Scholar 

  • Ebersbach G et al (2006) Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171. Mol Microbiol 61(6):1428–1442

    Article  CAS  PubMed  Google Scholar 

  • Ebersbach G et al (2008) A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell 134(6):956–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • England JC et al (2010) Global regulation of gene expression and cell differentiation in Caulobacter crescentus in response to nutrient availability. J Bacteriol 192(3):819–833

    Article  CAS  PubMed  Google Scholar 

  • Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev (MMBR) 74(4):504–528

    Article  CAS  Google Scholar 

  • Esue O et al (2010) Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo. PLoS One 5(1):e8855

    Google Scholar 

  • Fenton AK, Gerdes K (2013) Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. EMBO J 32(13):1953–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figge RM, Easter J, Gober JW (2003) Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol 47(5):1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51(5):1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Fogel MA, Waldor MK (2006) A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 20(23):3269–3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner KAJA, Moore DA, Erickson HP (2013) The C-terminal linker of Escherichia coli FtsZ functions as an intrinsically disordered peptide. Mol Microbiol 89(2):264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosal D, Trambaiolo D, Amos LA, Lowe J (2014) MinCD cell division proteins form alternating copolymeric cytomotive filaments. Nat Commun 5:5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gitai Z, Dye N, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A 101(23):8643–8648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gitai Z et al (2005) MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120(3):329–341

    Article  CAS  PubMed  Google Scholar 

  • Godfrin-Estevenon A-M, Pasta F, Lane D (2002) The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol Microbiol 43(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Goley ED, Iniesta AA, Shapiro L (2007) Cell cycle regulation in Caulobacter: location, location, location. J Cell Sci 120(Pt 20):3501–3507

    Article  CAS  PubMed  Google Scholar 

  • Goley ED et al (2010) Imaging-based identificationof a critical regulator of FtsZ protofilament curvature in Caulobacter. Mol Cell 39(6):975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goley ED et al (2011) Assembly of the Caulobacter cell division machine. Mol Microbiol 80(6):1680–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez D, Collier J (2013) DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol 88(1):203–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith JD, Bonner JF (1973) Chromatin-like aggregates of uranyl acetate. Nat New Biol 244:80–81

    Article  CAS  PubMed  Google Scholar 

  • Harris LK, Dye NA, Theriot JA (2014) A Caulobacter MreB mutant with irregular cell shape exhibits compensatory widening to maintain a preferred surface area to volume ratio. Mol Microbiol 94(5):988–1005

    Article  CAS  Google Scholar 

  • Holden SJ et al (2014) High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc Natl Acad Sci 111(12):4566–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hottes AK, Shapiro L, McAdams HH (2005) DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus. Mol Microbiol 58(5):1340–1353

    Article  CAS  PubMed  Google Scholar 

  • Howard M, Gerdes K (2010) What is the mechanism of ParA-mediated DNA movement? Mol Microbiol 78(1):9–12

    CAS  PubMed  Google Scholar 

  • Hughes HV et al (2013) Co-ordinate synthesis and protein localization in a bacterial organelle by the action of a penicillin-binding-protein. Mol Microbiol 90(6):1162–1177

    Article  CAS  PubMed  Google Scholar 

  • Ingerson-Mahar M et al (2010) The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nature 12(8):739–746

    CAS  Google Scholar 

  • Iniesta AA (2014) ParABS system in chromosome partitioning in the bacterium Myxococcus xanthus. PLoS One 9(1):e86897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iwai N, Nagai K, Wachi M (2002) Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2. Biosci Biotechnol Biochem 66(12):2658–2662

    Article  CAS  PubMed  Google Scholar 

  • Jakimowicz D et al (2007) Characterization of the mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis. Microbiol (Reading, England) 153(Pt 12):4050–4060

    Article  CAS  Google Scholar 

  • Jenal U (2000) Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control. FEMS Microbiol Rev 24(2):177–191

    Article  CAS  PubMed  Google Scholar 

  • Jenal U (2009) The role of proteolysis in the Caulobacter crescentus cell cycle and development. Res Microbiol 160(9):687–695

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Sun SX (2012) Growth of curved and helical bacterial cells. Soft Matter 8(28):7446–7451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabsch W, Holmes KC (1995) The actin fold. FASEB J 9(2):167–174

    CAS  PubMed  Google Scholar 

  • Kelly AJ et al (1998) Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev 12(6):880–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiekebusch D et al (2012) Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitor MipZ. Mol Cell 46(3):245–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ et al (2000) Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J Bacteriol 182(5):1313–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY et al (2006) Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci U S A 103(29):10929–10934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick CL, Viollier PH (2012) Decoding Caulobacter development. FEMS Microbiol Rev 36(1):193–205

    Article  CAS  PubMed  Google Scholar 

  • Klein EA et al (2013) Physiological role of stalk lengthening in Caulobacter crescentus. Commun Int Biol 6(4):e24561

    Article  CAS  Google Scholar 

  • Koch MK, McHugh CA, Hoiczyk E (2011) BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol Microbiol 80(4):1031–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Król E et al (2012) Bacillus subtilis SepF binds to the C-terminus of FtsZ. PLoS One 7(8):e43293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kühn J et al (2009) Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J 29(2):1–13

    Google Scholar 

  • Kuru E et al (2012) In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed Eng 51(50):12519–12523

    Article  CAS  Google Scholar 

  • Laloux G, Jacobs-Wagner C (2013) Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization. J Cell Biol 201(6):827–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laub MT et al (2000) Global analysis of the genetic network controlling a bacterial cell cycle. Sci (New York, N.Y.) 290(5499):2144–2148

    Article  CAS  Google Scholar 

  • Leonard TA, Butler PJ, Löwe J (2005) Bacterial chromosome segregation: structure and DNA binding of the Soj dimer–a conserved biological switch. EMBO J 24(2):270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesley JA, Shapiro L (2008) SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J Bacteriol 190(20):6867–6880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z et al (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26(22):4694–4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2013) FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. Science (New York, N.Y.) 341(6144):392–395

    Article  CAS  Google Scholar 

  • Lim HC et al (2014) Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. eLife 3:e02758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin L, Thanbichler M (2013) Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton (Hoboken, NJ) 70(8):409–423

    Article  CAS  Google Scholar 

  • Liu J-L (2010) Intracellular compartmentation of CTP synthase in Drosophila. J Genet Genom Yi chuan xue bao 37(5):281–296

    Article  CAS  Google Scholar 

  • Long CW, Levitzki A, Koshland DE (1970) The subunit structure and subunit interactions of cytidine Triphosphate synthetase. J Biol Chem 245(1):80–87

    CAS  PubMed  Google Scholar 

  • Lu C, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182(1):164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Margolin W (1999) Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181(24):7531–7544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X et al (1997) Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J Bacteriol 179(21):6788–6797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6(11):862–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath PT et al (2007) High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 25(5):584–592

    Article  CAS  PubMed  Google Scholar 

  • Meier EL, Goley ED (2014) Form and function of the bacterial cytokinetic ring. Curr Opin Cell Biol 26:19–27

    Article  CAS  PubMed  Google Scholar 

  • Mierzejewska J, Jagura-Burdzy G (2012) Prokaryotic ParA-ParB-parS system links bacterial chromosome segregation with the cell cycle. Plasmid 67(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Mohl DA, Gober JW (1997) Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88(5):675–684

    CAS  PubMed  Google Scholar 

  • Mohl DA, Easter J, Gober JW (2001) The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol 42(3):741–755

    Article  CAS  PubMed  Google Scholar 

  • Noree C et al (2010) Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol 190(4):541–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noree C et al (2014) Common regulatory control of CTP synthase enzyme activity and filament formation. Mol Biol Cell 25(15):2282–2290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osawa M, Erickson HP (2011) Inside-out Z rings--constriction with and without GTP hydrolysis. Mol Microbiol 81(2):571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science (New York, NY) 320(5877):792–794

    Article  CAS  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2009) Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J 28(22):3476–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persat A, Stone HA, Gitai Z (2014) The curved shape of Caulobacter crescentus enhances surface colonization in flow. Nat Commun 5:3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichoff S, Lutkenhaus J (2007) Overview of cell shape: cytoskeletons shape bacterial cells. Curr Opin Microbiol 10(6):601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptacin JL et al (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nature 12(8):791–798

    CAS  Google Scholar 

  • Ptacin JL et al (2014) Bacterial scaffold directs pole-specific centromere segregation. Proc Natl Acad Sci 111(19):E2046–E2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quardokus EM, Brun YV (2002) DNA replication initiation is required for mid-cell positioning of FtsZ rings in Caulobacter crescentus. Mol Microbiol 45(3):605–616

    Article  PubMed  Google Scholar 

  • Quardokus E, Din N, Brun YV (1996) Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. Proc Natl Acad Sci U S A 93(13):6314–6319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quardokus EM, Din N, Brun YV (2001) Cell cycle and positional constraints on FtsZ localization and the initiation of cell division in Caulobacter crescentus. Mol Microbiol 39(4):949–959

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan SK, Pritchard S, Viollier PH (2010) Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. Dev Cell 18(1):90–101

    Article  CAS  PubMed  Google Scholar 

  • Ringgaard S et al (2009) Movement and equipositioning of plasmids by ParA filament disassembly. Proc Natl Acad Sci 106(46):19369–19374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saint-Dic D et al (2006) A parA homolog selectively influences positioning of the large chromosome origin in Vibrio cholerae. J Bacteriol 188(15):5626–5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schofield WB, Lim HC, Jacobs-Wagner C (2010) Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. EMBO J 29(18):3068–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader JM et al (2014) The coding and noncoding architecture of the Caulobacter crescentus genome. PLoS Genet 10(7):1004463

    Article  CAS  Google Scholar 

  • Shaevitz JW, Gitai Z (2010) The structure and function of bacterial actin homologs. Cold Spring Harb Perspect Biol 2(9):a000364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shapiro L, Agabian-Keshishian N, Bendis I (1971) Bacterial differentiation. Science (New York, N.Y.) 173(4000):884–892

    Article  CAS  Google Scholar 

  • Shebelut CW, Jensen RB, Gitai Z (2009) Growth conditions regulate the requirements for Caulobacter chromosome segregation. J Bacteriol 191(3):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Shebelut CW et al (2010) Caulobacter chromosome segregation is an ordered multistep process. Proc Natl Acad Sci 107(32):14194–14198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si F et al (2013) Organization of FtsZ filaments in the bacterial division ring measured from polarized fluorescence microscopy. Biophys J 105(9):1976–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sliusarenko O et al (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol 80(3):612–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stove JL, Stanier RY (1962) Cellular differentiation in stalked bacteria. Nature 196:1189–1192

    Article  Google Scholar 

  • Stricker J, Erickson HP (2003) In vivo characterization of Escherichia coli ftsZ mutants: effects on Z-ring structure and function. J Bacteriol 185(16):4796–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundararajan K et al (2015) The bacterial tubulin FtsZ requires its intrinsicallydisordered linker to direct robust cell wallconstruction. Nat Commun 6:7281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swulius MT et al (2011) Biochemical and biophysical research communications. Biochem Biophys Res Commun 407(4):650–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szwedziak P et al (2014) Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3:e04601

    Article  PubMed  PubMed Central  Google Scholar 

  • Takacs CN et al (2010) MreB Drives De Novo Rod Morphogenesis in Caulobacter crescentus via remodeling of the cell wall. J Bacteriol 192(6):1671–1684

    Article  CAS  PubMed  Google Scholar 

  • Thanbichler M, Shapiro L (2006) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126(1):147–162

    Article  CAS  PubMed  Google Scholar 

  • Toro E et al (2008) Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc Natl Acad Sci 105(40):15435–15440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Elzen PJ et al (1983) Structure and regulation of gene expression of a Clo DF13 plasmid DNA region involved in plasmid segregation and incompatibility. Nucl Acids Res 11(24):8791–8808

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Ent F et al (2014) Bacterial actin MreB forms antiparallel double filaments. eLife 3:e02634

    PubMed  PubMed Central  Google Scholar 

  • Vasa S et al (2015) β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR. Proc Natl Acad Sci 112(2):E127–E136

    Article  CAS  PubMed  Google Scholar 

  • Vaughan S et al (2004) Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 58(1):19–29

    Article  CAS  PubMed  Google Scholar 

  • Viollier PH et al (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci U S A 101(25):9257–9262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JK, Brun YV (2007) Out on a limb: how the Caulobacter stalk can boost the study of bacterial cell shape. Mol Microbiol 64(1):28–33

    Article  CAS  PubMed  Google Scholar 

  • Wagner JK, Galvani CD, Brun YV (2005) Caulobacter crescentus requires RodA and MreB for stalk synthesis and prevention of ectopic pole formation. J Bacteriol 187(2):544–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (1997) Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179(17):5551–5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Jones BD, Brun YV (2001) A set of ftsZ mutants blocked at different stages of cell division in Caulobacter. Mol Microbiol 40(2):347–360

    Article  CAS  PubMed  Google Scholar 

  • Wang SCE, West L, Shapiro L (2006) The bifunctional FtsK protein mediates chromosome partitioning and cell division in Caulobacter. J Bacteriol 188(4):1497–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner JN, Gitai Z (2010) High-throughput screening of bacterial protein localization. Methods Enzymol 471:185–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White CL, Kitich A, Gober JW (2010) Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol Microbiol 76(3):616–633

    Article  CAS  PubMed  Google Scholar 

  • Williams B et al (2014) ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division. Mol Microbiol 93(5):853–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakhnina AA, Gitai Z (2012) The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus. Mol Microbiol 85(6):1090–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B et al (2015) The global regulatory architecture of transcription during the Caulobacter cell cycle. PLoS Genet 11(1):e1004831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuckerman DM et al (2015) The bactofilin cytoskeleton protein BacM of Myxococcus xanthus forms an extended β-sheet structure likely mediated by hydrophobic interactions. PLoS One 10(3):e0121074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Goley laboratory for helpful discussions and for critical comments on this manuscript. Research in the Goley laboratory relevant to the subject of this chapter is supported by the National Institutes of Health under award number R01GM108640 (to E.D.G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin D. Goley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sundararajan, K., Goley, E.D. (2017). Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape. In: Löwe, J., Amos, L. (eds) Prokaryotic Cytoskeletons. Subcellular Biochemistry, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-53047-5_4

Download citation

Publish with us

Policies and ethics