Skip to main content

A Novel Image Classification Method with CNN-XGBoost Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10431))

Abstract

Image classification problem is one of most important research directions in image processing and has become the focus of research in many years due to its diversity and complexity of image information. In view of the existing image classification models’ failure to fully utilize the information of images, this paper proposes a novel image classification method of combining the Convolutional Neural Network (CNN) and eXtreme Gradient Boosting (XGBoost), which are two outstanding classifiers. The presented CNN-XGBoost model provides more precise output by integrating CNN as a trainable feature extractor to automatically obtain features from input and XGBoost as a recognizer in the top level of the network to produce results. Experiments are implemented on the well-known MNIST and CIFAR-10 databases. The results prove that the new method performs better compared with other methods on the same databases, which verify the effectiveness of the proposed method in image classification problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25(2), pp. 1097–1105 (2012)

    Google Scholar 

  3. Erhan, D., Szegedy, C., Toshev, A., et al.: Scalable object detection using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2147–2154 (2014)

    Google Scholar 

  4. Diao, W., Sun, X., Zheng, X., et al.: Efficient saliency-based object detection in remote sensing images using deep belief networks. IEEE Geosci. Remote Sens. Lett. 13(2), 137–141 (2016)

    Article  Google Scholar 

  5. Li, C., Wei, W., Wang, J., Tang, W., Zhao, S.: Face recognition based on deep belief network combined with center-symmetric local binary pattern. In: Park, J., Jin, H., Jeong, Y.S., Khan, M. (eds.) Advanced Multimedia and Ubiquitous Engineering. LNEE, vol. 393, pp. 277–283. Springer, Singapore (2016). doi:10.1007/978-981-10-1536-6_37

    Chapter  Google Scholar 

  6. Taigman, Y., Yang, M., Ranzato, M.A., et al.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  7. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  8. Song, R., Chen, S., Deng, B., Li, L.: eXtreme gradient boosting for identifying individual users across different digital devices. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds.) WAIM 2016, Part I. LNCS, vol. 9658, pp. 43–54. Springer, Cham (2016). doi:10.1007/978-3-319-39937-9_4

    Chapter  Google Scholar 

  9. Mackey, L., Bryan, J., Mo, M.Y.: Weighted classification cascades for optimizing discovery significance in the HIGGSML challenge. In: NIPS 2014 Workshop on High-energy Physics and Machine Learning, pp. 129–134 (2015)

    Google Scholar 

  10. Bekkerman, R.: The present and the future of the KDD cup competition: an outsider’s perspective

    Google Scholar 

  11. Lecun, Y., Boser, B., Denker, J.S., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)

    Google Scholar 

  12. Zipser, D., Andersen, R.A.: A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331(6158), 679–684 (1988)

    Article  Google Scholar 

  13. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  14. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Chan, T.H., Jia, K., Gao, S., et al.: Pcanet: a simple deep learning baseline for image classification. IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  Google Scholar 

  16. Ao, D.: Integration of Unsupervised Feature Learning and Neural Networks Applied to Image Recognition, pp. 19–37. South China University of Technology (2014)

    Google Scholar 

  17. Elleuch, M., Maalej, R., Kherallah, M.: A new design based-SVM of the CNN classifier architecture with dropout for offline arabic handwritten recognition. Procedia Comput. Sci. 80, 1712–1723 (2016)

    Article  Google Scholar 

  18. Le, Q., Sarlós, T., Smola, A.: Fastfood-approximating kernel expansions in loglinear time. In: Proceedings of the International Conference on Machine Learning (2013)

    Google Scholar 

  19. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, pp. 30–35. University of Toronto (2009)

    Google Scholar 

Download references

Acknowledgement

This research work is funded by the National Key Research and Development Project of China (2016YFB0801003), the Key Laboratory for Shanghai Integrated Information Security Management Technology Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ren, X., Guo, H., Li, S., Wang, S., Li, J. (2017). A Novel Image Classification Method with CNN-XGBoost Model. In: Kraetzer, C., Shi, YQ., Dittmann, J., Kim, H. (eds) Digital Forensics and Watermarking. IWDW 2017. Lecture Notes in Computer Science(), vol 10431. Springer, Cham. https://doi.org/10.1007/978-3-319-64185-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64185-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64184-3

  • Online ISBN: 978-3-319-64185-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics